8408604

Apgar, David Puschel

THE ADVERSARY SYSTEM IN LOW-LEVEL SOVIET ECONOMIC DECISIONMAKING

.

The Rand Graduate Institute

PH.D. 1984

University Microfilms International 300 N. Zeeb Road, Ann Arbor, MI 48106

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark $\underline{\checkmark}$.

- Glossy photographs or pages _____
- 2. Colored illustrations, paper or print
- 3. Photographs with dark background _____
- Illustrations are poor copy _____
- 5. Pages with black marks, not original copy _____
- 6. Print shows through as there is text on both sides of page_____
- 7. Indistinct, broken or small print on several pages _____
- 8. Print exceeds margin requirements _____
- 9. Tightly bound copy with print lost in spine _____
- 10. Computer printout pages with indistinct print
- 11. Page(s) ______ lacking when material received, and not available from school or author.
- 12. Page(s) ______ seem to be missing in numbering only as text follows.
- 13. Two pages numbered _____. Text follows.
- 14. Curling and wrinkled pages _____
- 15. Other_____

University Microfilms International

THE ADVERSARY SYSTEM

IN LOW-LEVEL SOVIET ECONOMIC DECISIONMAKING

Ъу

David P. Apgar

A.B. Harvard College, Cambridge, Massachusetts B.A./M.A. Oxford University, United Kingdom

DISSERTATION

Submitted January 1984 in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in the

> Rand Graduate Institute Santa Monica, California

Approved Charlie E. Chelps (Chairman)

Robert hr. Solon

1/9/81/ (date)

1/29/84

2/3/84

Degree conferred:_____

(date)

ABSTRACT

This essay considers low-level economic decisionmaking in Soviet nondefense industry. In particular, it considers industral structure and decisionmaking processes affecting choices such as that between importing foreign technology and investment in domestic research and development in three machinery sectors: computers, agricultural machinebuilding, and chemical/petrochemical equipment construction. There emerges a pattern of industrial conflict between suppliers and clients that seems to lack any fixed predictable form of conflict resolution. Such a situation in Soviet industry does indeed permit the expression of numerous conflicting interests. But it lacks the routine forms of conflict resolution that permit a market to overcome its tensions or a parliament to reach consensus on delicate issues. A consequence of this appears to be the importance of the influence of the domestic client of Soviet machinery ministries in determining decisions affecting trade outcomes, as the three case studies illustrate.

This influence takes the form of variance in the quality of information about strains in industrial sectors that becomes available to central decisionmakers as a result of client-supplier interaction. The quality of this information varies with the amount of attention a client is likely to turn to the supply of the component in question, all other things being equal. The amount of client managerial attention expended on a component appears to depend on the availability of substitutes for the components, the pressure from the center on the client to perform, the sensitivity of the client's product's performance to the component's performance, the rate of change of component technology, and (in some situations) the cost share of the component.

SUMMARY

This essay considers low-level economic decisionmaking in Soviet nondefense industry. In particular, it considers industral structure and decisionmaking processes affecting choices such as that between importing foreign technology and investment in domestic research and development in three machinery sectors: computers, agricultural machinebuilding, and chemical/petrochemical equipment construction. There emerges a pattern of industrial conflict between suppliers and clients that seems to lack any fixed predictable form of conflict resolution. Such a situation in Soviet industry does indeed permit the expression of numerous conflicting interests. But it lacks the routine forms of conflict resolution that permit a market to overcome its tensions or a parliament to reach consensus on delicate issues. A consequence of this appears to be the importance of the influence of the domestic client of Soviet machinery ministries in determining decisions affecting trade outcomes, as the three case studies illustrate.

This influence takes the form of variance in the quality of information about strains in industrial sectors that becomes available to central decisionmakers as a result of client-supplier interaction. The quality of this information varies with the amount of attention a client is likely to turn to the supply of the component in question, all other things being equal. The amount of client managerial attention expended on a component appears to depend on the availability of substitutes for the components, the pressure from the center on the client to perform, the sensitivity of the client's product's performance to the component's performance, the rate of change of component technology, and (in some situations) the cost share of the component.

- iii -

iv

.

CONTENTS

SUMMARY	iii
---------	-----

Section

Ι.	INTRODUCTION	1
	The Adversmary System in Soviet Economic Decisionmaking The Cases Limitations and Benefits Background	2 12 15 19
II.	COMPUTERS	25
	Industry Structure Client Supplier Interaction Conflict Resolution	27 31 47
111.	AGRICULTURAL MACHINEBUILDING	53
	Industry Structure Client-Supplier Interaction Conflict Resolution	56 73 83
IV.	CHEMICAL EQUIPMENT CONSTRUCTION	88
	Industry Structure Client-Supplier Interaction and Conflict Resolution	89 100
ν.	CONCLUSION	106
FOOTNO	TES	111

I. INTRODUCTION

To predict the behavior of an economic system, we must know how it makes economic decisions and how it attempts to implement its choices. Decisionmaking is complex, however: we cannot learn the decision procedures of an organization or system as easily as we can learn its budgeting. In particular, the various levels of industry are often responsible for different categories of industrial decisions. This essay attempts to characterize a little-explored level of Soviet industrial decisionmaking and to draw several conclusions concerning direction of the Soviet economy from the patterns that emerge.

The argument underlying this study is that central or top-level economic decisionmaking in the USSR is only as good as the information about industrial interactions on which it is based. In many cases, this information comes from the feedback industrial users or clients return to their suppliers and the suppliers' responsiveness to that feedback. The subject of this study is the adversary system that generates but also mediates disputes between clients and suppliers at the ministerial and plant level in Soviet industry. We may think of the adversary system as a decisionmaking process itself whose by-product is information on strains in industrial sectors. The operation of such an adversary system in the Soviet context implies that client characteristics will affect economic decisionmaking at the center. This paper does not examine top level decisionmaking; it is focused on the interactions among plants and between plants and ministries.

- 1 -

THE ADVERSARY SYSTEM IN SOVIET ECONOMIC DECISIONMAKING

This essay claims that information on the efficiency of each nondefense industrial sector, that is available to central agencies for toplevel economic decisionmaking, comes partly from an adversary system that mediates the needs of industrial clients and the capabilities of industrial suppliers and whose operation depends on the responsiveness of suppliers to client needs and on the feedback from clients to supplier responses. The following subsections define the adversary system, the information on industrial sector functioning that it produces, and the conditions determining client feedback on which it adversary system in a hypothetical economic decision such as the determination of technology import levels.

Adversary Decisionmaking

The cases that follow in Sections II-IV show a strong pattern of conflict at low levels of industry combining two striking features: an adversary system in which transacting enterprises settle into predictable, often antagonistic roles of client and supplier, and the apparent lack of any set arbitral procedure for deciding the resulting industrial disputes. Several Western scholars have drawn attention to the role of local rayon or oblast committee of the Communist Party in the adjudication of these quarrels, and the case material in this paper also supplies some examples of such activity. The result is that the regional articulation of the Party system begins to resemble the American judiciary, and Soviet managers discover increasing demands made of their litigious capabilities.

- 2 -

Although this essay stresses lateral adversary relations between transacting enterprises, there is also room for vertical adversary relations between enterprises and ministry administrations or between ministry administrations and the central decisionmaking apparatus. The fourth chapter touches on vertical adversary relations and provides some indirect evidence for their existence.

Soviet low-level decisionmaking, on this view, differs from textbook descriptions of bureaucratic decisionmaking as well as from the decisionmaking of classical markets. For the purpose of discussion, it helps to break down decisionmaking systems along two dimensions. The first dimension captures the ability of a system to express diverse objectives, whereas the second captures the ability of a system to generate consistent strategies. The system that expresses only a single, monolithic objective (as an approximation to the diverse objectives held by the members or parts of the system) and yet fails to generate a strategy to accomplish it, is embryonic, and of little interest here. The system that articulates only a single uncontested objective and routinely generates a strategy to accomplish it, approaches the ideal-type bureaucracies discussed variously by Weber, Allison, Simon and many other organization theorists. The system that can generate a clear, consistent strategy in the face of competing, complex objectives will come closer to maximizing global system welfare, as do classical markets and mature interest-group coalitions like the U.S. Congress. This leaves the system that can generate complex, competing objectives but fails to generate consistent strategies to accomplish any part of them, a niche that seems to contain Soviet

- 3 -

industrial decisionmaking at the ministerial and enterprise (or factory) level. The Soviet system is more evolved than an ideal-type bureaucracy since it can express competing industrial interests, but it lacks the fixed arbitral procedures that make bureaucracies like General Electric particularly effective in static industrial environments. It is this lack of fixed arbitral procedures that differentiates the Soviet system from classical markets, as well: prices dictate outcomes in a market despite the presence and expression of competing industrial claims, but what systematic form of conflict resolution can the Soviet manager expect? The following chart formalizes this pair of distinctions.

Types of Decisionmaking System

fixed decision procedures?

	No	Yes
single interest	Embryonic System (1)	"Rational Man" Bureaucracy (2)
competing interests	Soviet Nondefense Industry "Adhocracy" (3)	Interest Group Coalitions (e.g., Congress) Classical Markets (4)

Information for the Central Agencies

Central agencies such as Gosplan (the State Planning Committee), the Presidium of the Council of Ministers, and the Departments of the Communist Party's Central Committee seem to assume responsibility for most general decisionmaking in the Soviet nondefence economy. The decisions they take depend partly on resource constraints such as the scarcity of hard currency and on sector priorities and general economic objectives set by the Party leadership in the Central Committee and Politburo. The thrust behind the study of the Soviet adversary system, however, is the dependence of top-level economic decisionmaking on information about the functioning of particular sectors, and especially of the capital goods and industrial sectors. Only with information on strains in each industrial sector can the central decisionmaking apparatus resolve questions on matters such as import policy in accordance with the priorities and constraints it faces. The adversary system helps furnish such information.

This essay tries to enhance our ability to explain and predict Soviet economic decisionmaking by sketching a relation between several observable characteristics of particular Soviet industrial sectors and the quality and content of information available to central decisionmakers on the strains plaguing those sectors. An understanding of the way Soviet industry generates information about itself would enable us to model top-level economic decisionmaking as a rational (i.e. comprehensible) process deploying constrained resources to meet fixed objectives under certain cognitive limitations. Such a model would be an improvement over depictions of Soviet economic decisionmaking as a rational process under no information constraints, and as a rational process under insurmountable information constraints.

The working of an adversary system should affect both the content and quality of information available to the center. The more concerned about supply of a particular component or capital good a client is, the more abundant and informative should be his feedback in industrial interactions. This suggests that an understanding of the adversary

- 5 -

system might be doubly potent: it could predict both the direction in which adversary interaction pushes the center, and whether that direction should improve or degrade overall industrial performance. The material that follows is not so ambitious as to attempt such predictions. On the basis of limited evidence, this essay can hope only to throw out interesting leads. But in principle, it is possible to separate predictions of the content and quality of information issuing from adversary exchanges.

Ideally, one would gauge the quality of information produced by the adversary system by measuring its completeness and accuracy as a description of various sectors' efficiency. Among other things, this requires an unobtainable knowledge of all ordinal utilities and production functions in the Soviet economy. Backing off a bit from the ideal, one can still hope to distinguish the squeaky wheels that are about to fall off from those that will last forever, and to distinguish the golden silences from the deceptive ones. The modest goal of this essay is to give a broad-brush picture of which adversary relations are likely to produce information useful to a top-level decisionmaker.

Characterizing the Client

The value of the present approach to Soviet industrial decisionmaking depends on its ability to harness several observable characteristics of particular industrial sectors to draw conclusions about the usefulness of information arising from adversary relations in those sectors, from which we may make further inferences about toplevel decisionmaking in the economy. We may think of these observable characteristics as a set of initial conditions. The model of an adversary system lacking fixed arbitral procedures supplies the dynamic

- 6 -

that leads these conditions to some industrial outcome. The present essay assumes that the initial conditions describing the client are often as important as those describing the supplier in determining industrial outcomes in the Soviet Union. Nost commentators assume that a Soviet supplier's capabilities and intent drive production, so the burden on this essay is to demonstrate the fruitfulness of a complementary assumption relating clients to outcomes.

The purpose of this essay is not to characterize Soviet industrial clients in general economic terms, however, but to characterize the feedback they are likely to return to a supplier. Client feedback together with supplier responsiveness determine the ability of the adversary system to produce information that can eventually resolve industrial problems. The better the client feedback and the supplier responsiveness, the better the information. Four or five characteristics seem to go a long way in determining the quality and content of feedback from a given industrial client. Variance in these five characteristics across clients in different sectors should explain variance in adversary system outcomes (especially information quality) if we control for supplier responsiveness. Alternatively, we should be able to predict adversary system outcomes in a given sector from a description of the client in terms of these five characteristics together with a similar analysis of the supplier.

The five characteristics attempt to predict the distribution of time, energy and concern that an enterprise will allocate to the various supply components or materials competing for the attention of managers charged with procurement. They are:

o Availability of component substitutes

- 7 -

- o Pressure from center on client to perform
- o Client sensitivity to component performance
- o Rate of technological change affecting component
- o Cost share of component

There follow explanations of the characteristics.

Availability of substitutes: A Western economist might wish to distinguish between technological and economic availability. The former directs attention to the technical production function: components performing unique functions permit management no recourse in the event of supply shortfall. Thus the supply of unique components commands greatest management attention (all other things being equal). Economic availability focuses on the cost of substitutes: The supply of components whose substitutes are costliest (such as those displaced by labor) require special management attention. In the Soviet Union, it is technological availability that is of prime importance.

Pressure from center: The greater the pressure from the central agencies on a client to perform, the more intensely management will monitor supply of all parts and material.

Sensitivity to component performance: The supply of components critical to the successful operation of a client's product will draw closest management scrutiny. The possibility of performance shortfall focuses management attention.

Rate of technological change: The more rapidly a component technology changes, the more difficult will be the task of evaluating and criticizing component suppliers.

- 8 -

Cost share of component: In cases where projects are entirely or largely self-financed, including investment, the cost share of a component will also influence the attention management pays to supply.

Taken together, the characteristics provide a loose definition of client competence in evaluating component supply and sending potent signals back to a supplier througn the adversary system. A signal is potent to the extent it provides sufficient information to correct a problem. The better informed the evaluation, the more potent the feedback; and the more potent the feedback, the more useful the information produced through the operation of an industrial adversary system for the purposes of central economic decisionmaking.

A Context for the Adversary System

What can the adversary model ultimately explain? Let us consider a hypothetical outcome in Soviet- Western trade: the purchase of 100 snowblowers from Liechtenstein. This account will trace the outcome back through the operation of three decision systems, namely the international market, the Soviet central decisionmaking apparatus, and the adversary system characterizing supplier-client relations at low levels of Soviet industry. The account will distinguish parts of the explanation comprehended in this essay from parts excluded.

The international market mediates world snow-blower supply and Soviet demand (comprising an import decision by Gosplan and a hard currency offer from an import agency) to yield a trade outcome: the import into the Soviet Union of 100 Liechtenstein snow-blowers. This essay, obviously, does not consider the determinants of world capital goods supply, nor the operation of the Soviet central decisionmaking apparatus, of which the import decision is the direct product.

- 9 -

The Soviet central decisionmaking apparatus mediates snow-blower priority and hard currency constraints, on the one hand, and information on strains in the Soviet snow-blower sector, on the other, to yield an import decision. This essay does not consider the effect of priorities and general economic objectives or resource constraints on economic decisions from the center: the logic is laid out in every text on the Soviet economy. Information on industrial strains, however, is partly a product of the operation of the adversary system considered here.

The adversary system mediates the responsiveness of the Soviet snowblower ministry (Minsnoblo) to client needs, and the feedback from the Moscow City Street-cleaning Agency to Minsnoblo, to yield information, let us say, on an expected, unavoidable shortfall of 100 snow-blowers. This is the upshot of an industrial dispute concerning the feasibility of the Agency's technical specifications submitted to Minsnoblo last April, heard by three Noscow City Party officials at different levels in the city's Party hierarchy. This essay would not explicitly address determinants of supplier responsiveness, but it would attempt to characterize the quality of client feedback in terms of the care and resources the client is likely to bring to the procurement of the needed capital goods.

We may imagine that snow-blowers have no known machinery substitutes; that labor does not replace snow-blowers very cheaply; that the Kremlin is adamant about having clear streets in Moscow this winter; that snow-blower effectiveness is critical to the Agency's performance in winter; and that snow-blower technology is not outrunning the grasp of Agency engineers. The implication is that client feedback should be

- 10 -

of high quality, and that a dispute with a nonperforming domestic supplier should provide sufficient information on the relative utility of snow-blowers for street-cleaning to permit higher authorities to resolve the Agency's dilemma effectively.

The flowchart on the following page sets the logic of the present essay in the context of such an import decision. Circles identify the function of decisionmaking systems; boxes identify input variables which the systems mediate and output variables which the systems determine. The red linkages highlight the relations treated in the following chapters. The flowchart does not represent bureaucratic entities and information flows between those entities, but rather variables and the functions of linked decision systems.

THE CASES

The cases to follow focus on adversary relations at the ministerial and plant level in three machinebuilding sectors: mainframe data processors, agricultural machinery and chemical/petrochemical equipment. All three sectors produce information capable of prompting decisions from the center to import technology. (Headlines on computer and gas pipeline compressor turbine blade exports to the Soviet Union, and the 1983 Agribusiness USA exhibition in Moscow, underscore Soviet interest in importing technology in these areas.) The actual outcomes of the adversary system in each sector differ considerably, however. The case studies try to link these differences to variance across the sectors in the characteristics of client feedback discussed earlier.

Ideally, once again, the three cases would control perfectly for supplier responsiveness in order to demonstrate a dependence of adversary system outcomes on client feedback. The three cases do not offer such a control. But the three suppliers do resemble one another to a greater degree than do the client groups, giving us directional evidence for the dependence of adversary system outcomes, and ultimately of central economic decisionmaking in the Soviet Union, on client feedback to suppliers.

In the chapter on computer construction, the decisionmaking model explains why the buyer's technical incompetence in applications engineering continues to bedevil the sector, in spite of incentive reforms. (It is not necessary that client technical incompetence should cause problems: IBN operates in an environment of technically uninformed buyers.) The decisionmaking model explains in the following chapter why

- 12 -

the creation of a central purchasing agency to procure tractors for farmers has not ironed out the perplexing shortfalls in Soviet agricultural machinebuilding. The chapter on petrochemical and chemical equipment construction exploits the decisionmaking model to explain how buyer-supplier collusion has created a heavy reliance on foreign technology and an adversary relation between the petrochemical equipment sector and the state.

The computer sector serves clients involved in major manufacturing projects whose costs of inventory and manufacturing control are often a tiny percentage of overall production expense. Ten fingers and an abacus are a substitute for these computing machines (often a good one). The client sectors considered here are usually not the highest priority sectors. The clients are relatively insensitive to computer performance, and the rate of technological change makes it difficult for a client to devise appropriate computer applications. The upshot is a client with little motivation and ability to become technically competent in computer application and maintenance. The first case ascribes to these conditions the apparent lack of direction of Minpribor, the supplying ministry. Many computer specialists feel that Soviet computer importing policy exhibits such indirection, overall.

Tractor construction provides an example of clients with no financial responsibility for the differences in price between the tractors that their purchasing agency, Sel'khoztekhnika, buys for them: so cost share of equipment upgrades is zero. Because size of the tractor fleet and increased horsepower complement reliability, tractor manufacturers tend to ignore reliability altogether in favor of more and bigger machines. Pressure on the agricultural sector is diffused over

- 13 -

several bureaucratic actors. And it is hard to link agricultural output to tractor performance given the vagaries of climate. The upshot is that clients are irresponsible in the feedback they provide to tractor manufacturers; they misdirect Mintraktor in calling for bigger, not more reliable machines. The second case ascribes the misdirection of the supplier to the structural irresponsibility inherent in tractor buyers' feedback.

Chemical equipment serves clients under strong pressure from the center to perform. Their performance depends often on the precise functioning of components such as steam turbine blades. The technology is well understood. But there are no substitutes for advanced turbine technology in devising an efficient pumping station. The upshot is a risk-averse client prepared to go to great lengths to insure reliability of supply of certain components. Interestingly, the supplying ministry seems to have evolved in considerable part into a maintenance and service organization for foreign componentry. The third case ascribes the partial atrophy of the supplier's functioning as an original equipment manufacturer to the feedback of a highly risk-averse client.

In summary, the adversary model provides a logic for the derivation of economic outcomes of an informational nature from combinations of four main client characteristics. We observe supplier indirection as a function of client technical incompetence; supplier misdirection as a function of client irresponsibility; and suppler evolution away from production toward general contracting, assembly and maintenance, as a function of client risk-aversion.

- 14 -

LIMITATIONS AND BENEFITS

Detracting from this work, it may be argued, is the avoidance of supplier characterization, the division of labor between coverage of central decisionmaking and coverage of low-level industrial decisionmaking, the bias of the information sources, and the limitations inherent in a choice of only three cases for study. Addressing the first point, it seems that we already know supplier characteristics determine outcomes in a command economy.

As noted earlier, this study does not attempt to analyze top level decisionmaking. The absence of information on Politburo policy formation and its translation into directives by central planners further forces the decision to focus on low-level industrial organization. The present approach attempts to exploit another source of easily available information, namely industrial journals tracking ministry and enterprise relations.

It is important to understand, however, that an information base built on Soviet-reported industrial interactions incorporates significant bias. The editors of industrial journals in the USSR undoubtedly have agendas that determine which reports of industrial problems they publish and which reports they neglect. We can therefore not determine from the reports we read what the full range of industrial strains in the USSR might be. The selection of computers, tractors, and petrochemical and chemical machinery for case study attempts to minimize the bias simply because it would seem the Soviets have little to hide in these industrial sectors. The Western literature on the Soviet defense sector suggests there may be important differences between civil and

- 15 -

military industry in matters of supply stringencies, efficiency and cost considerations, and managerial behavior. Therefore, any conclusion drawn from this study cannot be automatically applied to military industry.

The cases permit inference from client feedback characteristics to adversary system outcomes only to the extent there are more outcomes than explanatory client characteristics; to the extent they control for supplier characteristics; and to the extent they include a broad range of explanatory client traits. The present study does not measure up to the first two criteria. But the criteria are perhaps too harsh for a study supporting its contentions with illustrative, directional evidence. Even so, it seems that the four main explanatory client characteristics tend to move in the same direction, pointing to good or poor client feedback, and begin to count as a single independent variable. The study controls for supplier characteristics as well as possible in the choice of documented sectors. And the examples of technically incompetent, irresponsible and risk-averse clients do cover a fairly broad spectrum of the six characteristics driving client feedback.

There are other benefits to the present approach to the study of Soviet decisionmaking. The adversary system's mediation of client feedback and impact on the cognitive limitations of the central decisionmakers provides an intriguing nonmarket correlate to Marshall's first law; the theory provides a new explanation of the inefficacy of reform in some Soviet industrial sectors; and it suggests a rationale for the argument that overinvestment is as likely as underinvestment in foreign technology (relative to an efficient equilibrium) for some

- 16 -

sectors of the Soviet economy. The arguments in the defence of the thesis hardly support it independently: they are secondary to the goal of enhancing our ability to predict Soviet economic decisionmaking. The paragraphs below rehearse these considerations in greater detail.

The adversary model might help relate Soviet central agency demand for technology imports to characteristics of the Soviet clients of machinebuilding sectors. Such a relation would hardly be a surprise in a classical market. In a smoothly functioning market, we could use Marshall's Laws to predict that the absolute price elasticity of demand for an input varies directly with the absolute price elasticity of demand for the final product, with the cost share of the factor, with the elasticity of substitution with other factors, and with the price elasticity of supply of other factors. Now it is true that there is an interpretation of these laws in the Soviet case. Thus we could try to relate the volatility of Soviet demand for an American tractor transmission to the volatility of Soviet internal demand for threshers, the cost of a transmission relative to an entire combine, the competitiveness of Soviet-produced transmissions, and the volatility of supply of Soviet engines, trailers, suspensions, etc. This interpretation suggests in particular that we examine the nature of the client of the Soviet sector receiving the new technology (as well as analyze the factor cost functions and the availability of substitutes) to determine the nature of demand for it.

But the entire chain of reasoning depends, as do Marshall's Laws, on the existence of a price structure and profit-maximizing behavior. An interesting sidelight of the present examination of Soviet industrial decisionmaking lies precisely in the possibility that it will provide

- 17 -

grounds for predicting a relation between the nature of Soviet demand for an input such as foreign technology and the nature of Soviet internal demand (on the part of the Soviet client) for the final product. In other words, a model of Soviet decisionmaking may allow us to recapture a correlate to Marshall's First Law (absolute price elasticity of demand for an input varies directly with absolute price elasticity of demand for the final product) in a nonmarket setting.

This study suggests supplier incentive reform will not necessarily improve central economic decisionmaking. If poor client feedback causes the adversary system to throw off misleading information about an industrial sector, the misinformation should persist despite the institution of reforms in the supplier ministry. It seems this is the case in the Soviet computer sector.

A further point this perspective on Soviet decisionmaking suggests is that with inadequate client feedback overinvestment in foreign technology may be as likely a priori as underinvestment in foreign technology. (Paradoxically, if this were the case, Western governments might find their export sanctions inadvertantly helping or subsidizing Soviet development. One could hardly expect to impose a cost on Soviet planners by restricting their practice of overinvestment.) The general line of argument on overinvestment in technology from any source is familiar from Nove, who derives it from the artificially low cost of capital to a manager in the Soviet Union.[1] But the present claim rests overinvestment on the structure of industrial decisionmaking itself, since many economic decisions appear to follow from incompetent evaluations of suppliers and clients in conflict. Such a decision procedure has no predisposition against overinvestment, so the symptom might persist even in the face of capital cost reform.

- 18 -

BACKGROUND.

The synthesis offered in the present essay has a rich ancestry. Joseph Berliner's treatment of the impact of decision rules on Soviet innovation informs the emphasis on industrial decisionmaking in this work. [2] Berliner's decision rules, however, include rules on profit, sales-revenue, labor-productivity, innovation, targets and the so-called ratchet (which refers to the monotonic increase of output targets). The broader sense of decision used here of an accepted protocol for conflict resolution extends Berliner's suggestions, but does not figure among them. Berliner also includes a chapter on the impact of Soviet demand on innovation, laying the groundwork for an analysis of the effects of client competence.[3] Nove shows sensitivity to the importance of the marketing or diffusion function in Soviet industry repeatedly in his overview of the Soviet economy. [4] The notion of an adversary system in Soviet industrial development parallels the use of interest groups in analysing coalitions and complex negotiation, as developed by Skilling and Griffiths. [5] The associated idea of the Party as a general-purpose ad hoc industrial arbiter acquired a useful and illuminating metaphor with Jerry Hough's suggestion that we think of the modern Communist Party of the Soviet Union as a development in the continental tradition of prefectural administraton. [b] We may compare the local Party secretary most usefully, he argues, with the Napoleonic prefect. The advent of an era of industrial conflicts requiring special technical competence for effective adjudication makes this suggestion particularly interesting, for the Soviet prefect has not normally been a technical expert. The notion of the Party as general arbiter goes back farther

- 19 -

than Hough, however. Skilling quotes a Czechoslovak commentator: "The Party as the leading and directing political force fulfills its function by resolving intra-class and inter-class interests."[7] Finally, Nove refers briefly to the arbitration tribunals (Gosarbitrazh) whose functions seem to be limited to contract enforcement.[8]

The extent to which failures in the Soviet incentive structure impede technological innovation or otherwise drive decisionmaking that affects demand for new technology is a question to which many commentators have devoted thought and study. The present essay de-emphasizes the subject for this reason, but cannot ignore it altogether. Berliner writes on this subject as follows:

It is interesting to note that the director of a major scientific research institute earns a salary that is 50 percent larger than that of the highest paid industrial executive in the country...It.is not Minerva, however, but Vulcan who works the forge. It is a plausible speculation that the society that honors--and pays--its industrialists more than its scientists may achieve a higher rate of technological advance.[9]

Incentives are important, in Berliner's view, but not independently efficacious in encouraging innovation. To predict innovation, he argues, one must equally consider the environment of suppliers, clients, prices and decision rules within which a manager operates. David Granick offers a different view: " "the essence of the Soviet problem of incorporating new-product development and major new-process development into normal civilian production consists of incentive difficulties."[10] He goes on to explain that adoption of the "American-G.D.R." approach, in which overall subjective evaluations of performance rather than objective, standardized quantitative criteria determine managerial bonus payments, would immediately improve the capacity of Soviet industry to absorb new technology. The cases that follow suggest, to the contrary, that the existence of a system that encourages adversary relations between suppliers and clients without providing a standard procedure for deciding disputes (such as a price mechanism) would impede technological innovation and diffusion regardless of the prevailing incentive structure. Berliner's assessment seems the safer position to take.

This study of decisionmaking structure complements several useful microeconomic and financial analyses of Soviet industrial development. Berliner, once again, provides several chapters on the evolution of costs and prices accruing to new products in the Soviet Union.[11] He explains the disadvantage to managers of developing new products arising from high start-up costs, and some of the attempts to reform new-product pricing to enable innovators to take advantage of learning effects. A recent OECD study by Zaleski and Wienert considers the effects on Soviet technology import of counterpurchase and compensation agreements that enable the Soviet Union to get around its hard-currency problems.[12] The present essay attempts to predict variations in Soviet economic decisionmaking given fixed financial arrangements with prospective foreign trading partners.

John Moore offers a provocative essay on agency costs and Soviet planning.[13] His thesis is straightforward: technological change is simply too expensive in terms of the rise in agency costs it incurs, where he defines agency costs as the cost of enforcing a principal's will through the action of uncooperative agents. The thesis is intuitively clear: Soviet planners must sacrifice too much control in unleasing the innovative forces of the country. Moore's peripheral remarks, however, constitute the wealth of his paper. He agrees with

- 21 -

Zaleski, for example, that the Soviet Union is centrally managed rather than centrally planned.[14] The idea that central authority plays an administrative or even adjudicative role rather than a policymaking role--at least at the lower levels of industry--finds expression precisely in the model of an adversary system lacking standard decision procedures.

At another point, he remarks, "The constant efforts at reform in the Soviet system and the many failures of reform proposals can be understood as a groping for solutions to the problems of agency costs in the face of these measurement difficulties" (difficulties in distinguishing the cost of agency from that of inefficiency).[15] The suggestion is that the inability to distinguish between true inefficiency (where shared objectives are misexecuted) and true agency problems (where objectives in conflict with those of the center are executed) would prevent the achievement of optimal economic outcomes even if planners could successfully overhaul the incentive system. Once again, incentives do not appear to be the sole key to Soviet economic optimality.

Along different lines, toward the end of his essay, Moore points out: "Where all enterprise capital is borrowed, as it effectively is in the Soviet enterprise, the manager faces no loss of personal capital in the event of failure...managerial decisions would be biased toward risky projects promising high bonus pay-offs."[16] The argument is that without some active discouragement of risky investment in innovation (or foreign technology), the Soviet enterprise manager is likely to be overly risk-prone much as the manager of a highly levered corporation. The discouragement arguably takes the form of success indicators

- 22 -

emphasizing current output targets, and new-product pricing and incentives that favor long-run production. The implication is that without such impediments to risk-taking, the Soviet manager would tend to overinvest in new technology. It is strange to think that technological overinvestment threatens the Soviet system. Nevertheless, the conclusion of the present essay explores an alternative rationale for this projection.

In summary, we may ask how best to predict Soviet economic decisionmaking on the basis of scarce information. The decisionmaking model featuring a proliferation of adopted adversary roles between clients and suppliers without fixed decision or adjudicative procedures for industrial conflict resolution explains the impact of client characteristics on industrial outcomes. This model also suggests that incentives alone are not the key to revitalizing flagging Soviet industries. Imagine the problems that remain for even a highly motivated Western-style manager who finds himself at the mercy of an arbitral system whose outcomes he cannot possibly predict. Lastly, the decisionmaking model proffered here offers no barriers to technological overinvestment. It is therefore plausible that Soviet demand for foreign technology is often higher than would be in the country's own best interests. The material on the Soviet computer sector suggests client incompetence in technical matters will lead to useless client feedback and supplier indirection. The material on agricultural machinebuilding illustrates the misdirection of suppliers as a result of the financial irresponsibility of the users' central procurement agency. And the cases on petrochemical and chemical equipment construction offer an interesting variation in which the Soviet supplier and a highly risk-

- 23 -

averse client appear to cooperate closely, creating a strong dependence on foreign technology.

-

•

.

The poor quality of user feedback to computer suppliers prevents effective supplier response and renders useless the information on computer utilization generated by the adversary system. The availability of clerks to substitute for data processors, the insensitivity of client industry performance to computer utilization, and the quick pace of technological change (particularly in input/output technology) conspire to explain the secondary place computer employment seems to take among the concerns of client enterprises. This chapter concentrates on the ineffectiveness of client-supplier interaction and the lack of any clear message on computer needs arising from the adversary process.

The case material on Soviet development and diffusion of mainframe data processing equipment includes examples of uses and abuses of computers by the domestic clients of the Ministry of Instrument Building, Automation Equipment and Control Systems (Minpribor). These examples support the claim that client technical competence partly determines many low-level industrial outcomes in the sector. It is not examples of clients' uses of Minpribor products but rather examples of clients' complaints about Minpribor performance that begin to establish the reason for the importance of client competence, however. These claims suggest the outlines of the adversary system at work in Soviet industry which the next chapter will fill out. The lack of a standard procedure for industrial conflict resolution starts to explain how client competence can affect demand for foreign technology, and why

- 25 -

reform of the Soviet incentive structure may prove ineffective by itself.

Kenneth Tasky opens his article on Soviet dependence on Western computer technology with these lines:

The Soviet computer industry lags behind the West in the number, variety, and technology of computers as well as in auxiliary equipment and supporting services. This has led to a substantial level of imports to meet priority needs.[17]

A number of positions on Soviet computer technology are compatible with this statement, however. One of these holds Soviet computer production to be hopelessly inefficient, but Soviet central economic decionmaking to be just the reverse. Indeed, the planning apparatus, on this view, is sufficiently sensitive to detect domestic technological lags, and sufficiently organized to seek foreign alternatives. Client feedback is unimportant in this scheme; and it seems only failings in the structure of incentives prevent the sector from achieving optimal production levels. In this model of industrial development, every investment from the center has an economic purpose, even if poor enterprise incentives distort the implementation. The pattern of industrial disputes and subsequent resolution illustrated below should call into question each of these points. In particular, we should have less confidence that Soviet decisions to invest in foreign computer technology or in domestic research and development represent sound responses to accurately perceived difficulties in the production cycle.

- 27 -

INDUSTRY STRUCTURE

Soviet commentators include BESM, Ural and Minsk series machines in the category of second generation machines, and the ES-1050, ES-1040, ES-1030, ES-1022, ES-1010, M-4030, M-7000 and M-400 in the third generation [18]. We are beginning to learn about the ES-1060 in detail, and it appears to represent only evolutionary technological developments. It is worth noting that "ES" (or "YeS") refers to the unified series of computers, designated "Ryad," produced in coordination with other Eastern European countries. They tend to be designed to perform similarly to IBM mainframe computers, and are capable now of speeds of two million operations per second, a figure not unusual for general-purpose research centers in the United States, such as Rand. Input-output problems, software weaknesses and organizational quirks tend seriously to erode the capabilities of Soviet computer centers, however.

Although the Ministry of the Radio Industry (Minradio) coordinates production of Ryad computers, it is the Ministry of Instrument Building (Minpribor) that occupies center stage in Soviet computer production. The following details are from a trip report by an American team visiting several of Minpribor's facilities.[19] It is a good representation of the image the Ministry tries consciously to project.

Minpribor has since 1967 experimented with economic accountability. It followed the Ministry of the Electrical Equipment Industry in deploying its own funds to finance the entire research-production cycle. Minpribor is the Ministry responsible for developing third generation microcomputers, financing the R&D effort out of its own resources.

(Most ministries rely on the state budget for capital.) It has organized itself into production associations or mergers of enterprises, formed scientific production associations, replaced ministerial subbranch administrations (glavki) with all-union industrial associations, subjected its branches to self-financing, and introduced a new pricing system to encourage new technology. (It is unclear that the state planning agency, Gosplan, has implemented the pricing system completely.) Each Minpribor five-year plan has included a 60° change in product mix (which may include considerable goldplating). The ministry has 10,000 product categories, which is large by American corporate standards. Elements of the state supply agency, Gossnab, plan supplies for Minpribor and the distribution of its products. These products bear the mark of highest quality, representing a 4% to 5% mark-up over a base price for computing equipment determined by several central agencies; the mark of first quality at base price; or second quality (obsolescent) at a discount. It must be understood that the customer pays a base price for even second-quality goods, but Minpribor receives only the discounted price to discourage extending product life-cycles and to compensate for learning effects in the absence of competitive pricing. Minpribor enjoys a 20° profit mark-up; its margins, in the past, have notoriously exceeded that by a factor of two, to the chagrin of the state price committee. Minpribor's projected image is upbeat: while most ministries emphasize the fervor with which their workers have striven to meet quotas, Minpribor emphasizes the fervor with which its managers have steered a singular course between the numerous perilous central agencies. It resembles Xerox more than IBM as a managers' organization.

- 28 -
The central agency that appears to supervise computer acquisition, be it foreign or domestic, is the State Committee for Science and Technology (GKNT, or Gostekhnika). It oversees the development of the computer sector in conjunction with Gosplan and the Academy of Sciences, and is broadly responsible for coordinating nonmilitary R&D, disseminating scientific information, increasing the efficiency of research, diffusing new technology and directing work in several comprehensive interbranch programs. The program direction seems to take the form of documents planning resource allocation across industry, agriculture, construction, transportation, communication, public health and computer equipment construction. [20] It is interesting that both Gostekhnika and Minpribor at different times enjoyed the leadership of businesslike individuals with a professed interest in industrial efficiency. It is unfortunate that there is not enough information available reliably to assess the impact of leadership on a Soviet industrial organization.

Several Central Committee Departments -- Science and Educational Institutions and Machine Building -- may be important players in the industry, but we have little open information on their activities. An example of a minor Party role is a report on the Minsk Order of Lenin Plant of Electronic Computers, which has charted a course over twenty years from the M-3 (30 operations per second) to the ES-1060 (a reverseengineered IBM-360 capable of two million operations per second). We may take as typical of one sort of Party-industrial interaction a 1976 award granted to the plant by the deputy chairman of the Presidium of the Supreme Soviet of Belorussia. Both the deputy chairman of the

- 29 -

Belorussian Council of Ministers and the "head of a section" of the Central Committee of the Belorussian Communist Party attended the award ceremony. [21] This form of Party-industrial interaction is the most widely publicized, but far from the most important for economic decisionmaking. Indeed, the publicity probably overstates the importance of this sort of award-granting activity in low-level, regional economic activity. The Party's role in adjudicating industrial disputes is more significant: one of the few cases visible in the sources examined for this study appears later in this section.

There are varying views of the future role of computers, depending on the operating or planning bias of the writer. Computers, some hope, will:

draft scientifically substantiated alternatives for plan decisions and ensure selection of the best of them; consider more fully in plans social needs and provide for satisfying them with the most efficient use of labor, physical and financial resources; intensify the complex influence of the plan and economic levers and incentives on accelerating scientific and technical progress...achieve balances of productive capacity and manpower...achieve the combination of sector and territorial principles of planning; raise the effectiveness of external economic ties; make more extensive use of the program-target method in planning; and intensify work on monitoring the course of fulfillment of the plans. [22]

In order to accomplish this, the Council of Ministers decided in 1966 that Gosplan, the Central Statistical Administration (TsSU), and Minpribor were to approve ministerial plans for management automation (ASU) networks; that Minpribor was to maintain technical standards and compatibility; that Minradio was to build Ryad; that TsSU was to manage Ryad; that the Academy of Sciences was to develop a system of optimal planning; that Gosplan was to oversee the general computer effort; and that Gostekhnika was to pick up miscellaneous other responsibilities. [23] Since then, the Central Statistical Administration has largely dropped out of the effort while the role of Gostekhnika has grown.

CLIENT SUPPLIER INTERACTION

Computer clients and suppliers spend a fair amount of time blaming one another for industrial shortfalls. These interactions echo in the industrial journals, providing information on the functioning of the adversary system in the Soviet Union and the way it resolves or fails to resolve disputes. This subsection gives a range of cases illustrating the often difficult emergence of new computer applications from clientsupplier interactions.

Several themes fall out from the cases. First, the problems plaguing the computer sector do not seem to arise solely from troubles in the production cycle. Lack of capability in applications engineering on the part of the client often seem to be the main obstacle to growth of computing power in the Soviet Union. This is noteworthy as it affirms the importance of buyer initiative and technical competence in the Soviet setting. An ideal-type command economy might not need buyer competence and initiative: arguably, it would be possible to direct a ministry to disseminate computers throughout industry without the support of the ultimate users by mandating the ministry to develop applications and maintain the machines above fixed up-time quotas. Where the economy progresses through the interaction of suppliers and clients in adversary roles, this is impossible. Buyer initiative and technical competence are unnecessary for successful computer penetration in classical markets, too, when producers find that applications engineering for clients is profitable and undertake the integration of

- 31 -

computer systems with customer operations themselves. The deleterious effect of Soviet computer sector clients on computer penetration thus argues for an organizational setting along the lines of the adversary model. Second, the attempts to reform the structure of incentives in the Soviet computer sector do not appear to be improving outcomes. This is consistent with what we would expect if lack of fixed arbitral procedures disturbed the sector, since such a lack interferes with transactions even when all parties are competitively motivated. In summary, the existence of an adversary system lacking fixed arbitral procedures helps explain both the relation between client incompetence and unsatisfactory outcomes, and the inefficacy of incentive reform, in the Soviet computer sector.

The computer sector, it should be said at the outset, has not stood still. Soviet cybernetic applications now include planning, dosimetry, state statistics, accounting, instruction and higher pedagogy (smart terminals and reference tools), computational linguistics, rural construction, transportation management, oil pipeline transport control, settlement with suppliers, Lithuanian mineral resource requirements, financial calculations for the Azerbaidzhan Gossnab, personnel administration, analysis of state working capital and current assets, fuel supply, railroad management, and analysis of trade turnover, incomes, distribution costs and profits of USSR Gossnab organizations. Even if it turned out many of these applications did not challenge the limits of Soviet computer technology, the list is impressive for an economic system whose nondefense sectors typically experience failures in the introduction and diffusion of new technologies.

- 32 -

At least some of the planned uses, nevertheless, would challenge any existing level of technology. Plans for a computer network to serve the Russian Soviet Federated Socialist Republic, for example, call for a three-tier system. One tier is devoted to the directive agencies-the RSFSR Supreme Soviet and the RSFSR Council of Ministers. An interindustrial tier will include ASUs for RSFSR Gosplan, RSFSR Ministry of Finance, RSFSR Ministry of Construction, the RSFSR State Committee for Prices, the RSFSR Central Administration for Materials and Equipment Supply and Marketing, etc. Thirdly, a territorial-industrial tier will unify the ASUs of all Republic ministries, departments and agencies.[24] . Individual ministerial branches, importantly, will develop the network of the third tier from the bottom up.

Rudney describes the establishment of a Minpribor branch management computer center:

Its primary function is to get information to the Director for the purpose, on the one hand, of revision of volumes of capital-construction contract work for each Gostekhnika contractor, and on the other, of arranging with Gosplan the appropriate ratio of budget payments to branch reinvestment from the store of ministerial profits.[25]

Such a center would link up with every associated branch, department and agency in the Republic to produce an information transmission and retrieval system substantially different from any computer application in the West.

It is in heavy industry, however, that computers are first penetrating the nondefense economy. (Aeroflot ticketing is another early example.) We immediately find the client's level of technological preparedness linked to success of computerization in the client's

industry. By 1978 the chemical industry operated 56 Automated Systems of Management for Technological Processes (ASUTP) costing two million rubles each. [26] Examples include systems at a polyethylene plant and a nitrogen fertilizer plant supposedly saving a quarter of their value annually. The experience of the chemical industry is that ASUs are more valuable at the later stages of production, once an enterprise has started to move down its learning curve. The trouble is with the initial computerization of enterprise operations in the first place. The Kirovakan Scientific Research Institute "Avtomatika" has built ASUs for technical processes such as copper matte conversion (sulfide processing after smelting) at the Balkash Mining Combine and thermal furnace control at the Usol' Chemical Combine and Buhne Werke. Yerevan Chemical Combine is receiving packets of applied programs for inclusion in ASU software. The Kirovakan Research Institute nevertheless complains that only three Armenian chemical enterprises are buying ASUs, and one of those had an inactive system for at least two years due to lack of personnel. Kirovakan attributes failures in the diffusion of ASU technology in Armenia to lack of coordination among enterprises attempting to computerize individually.[27] (Software, it is noted here, can amount to 50% of the cost of ASU implementation.)

Even once an enterprise in the chemical industry sets up a computer system with some applications, its feedback to the supplier can show flaws. The Kiev Institute of Automation has supplied a system for mine processes to the production association "Uralkaliy" that was two years old in 1978. At that time, nevertheless, Uralkaliy failed to determine output quantity and quality, to monitor the main blower and the mine shaft temperature. A team from the client's administration, the

- 34 -

Ninistry of the Chemical Industry (Minkhimprom), concluded that the ASUTP displayed a low level of scientific and technical development, poor subsystem coordination, and lack of adequate "support" data. The team made a statement against peripheral equipment profusion (due to servicing difficulties), yet for minicomputers (where servicing problems are bound to be worse due to high repair-cost/total-value ratios).[28] The generality of the client's conclusions and the peculiarity of their recommendations to Minpribor--namely, to step up minicomputer production--cast doubt on their ability effectively to evaluate difficulties in ASU use. On the other hand, the Minkhimprom team might have adopted the cynical position that no ASU will ever see the light of repair, so it makes more sense to purchase cheaper processors-disposable computers, as it were.

The chemical industry does not have a very good record of computer utilization compared with other industries. This suggests the chemical industry is relatively unconcerned with computers in its production activities. This in turn implies a low level of concern in the industry with computer acquisition, application and upkeep, and poor feedback to Minpribor. Such poor feedback would explain the conflicts we are seeing. Minkhimprom computers operated an average of 10.7 hours daily in 1976, compared with an industry-wide average of 11.6 hours. (Other figures reported: Ministry of Railways--15.5, hydrometeorological service--15.9, Ministry of Heavy Power and Transport Machine Building--14.2, Ministry of Chemical and Petrochemical Machine Building (Minkhimneftemash)--10.1, Ministry of Electrical Equipment--10.2, Minpribor itself--11.4.)

- 35 -

The view of the Central Statistical Administration (TsSU) is that computer centers under so-called khozraschet, or economic accountability, as opposed to state budget financing, tend to achieve higher work loads and greater profitability with their independent budgets. The key appears to be the incentive khozraschet gives a computer center to solicit contracts to provide computer services to organizations lacking their own facilities. If TsSU is right, this is an example of incentive reform (khozraschet) effectively leading to efficient economic decisionmaking on the part of enterprises. Only 12°, of the computer centers in the Soviet Union were on khozraschet in 1976, however, including those of TsSU, Gossnab, the Ministry of Railways, and the State Bank (Gosbank). [29]

TsSU, interestingly, has trouble with its own branches. The reason appears to be subtler than mere motivational failures. When a maintenance worker wrote to the journal *Sovetskaya Belorossiya* complaining of hundred-ruble computer equipment breaking down for lack of a one-ruble part, an official of the Belorussian Statistical Administration replied that the USSR Central Statistical Administration had put restrictive ceilings on spare part orders from its branches. Refusing to intercede for its branches, TsSU suggested its Belorussian branch request spare parts from the Minsk Experimental Plant for Repair and Technical Maintenance of Computer Equipment of the All-Union Association Soyuzschettekhnika--a request doomed, no doubt, to oblivion without support from the center.[30] TsSU and Soyuzschettekhnika are at least developing a uniform system of preventive maintenance for computer equipment. But preventive maintenance cannot create spare discs. The

- 36 -

question of client competence in this case is complex. Enterprises of TsSU may be well versed in computer technology, but the overall organization of this particular client agency may hamper its effectiveness.

M. Rakovskiy, a deputy chairman of Gosplan in 1977, faults the production ministries. He cites three major problem areas in the production of computers by Minradio and Minpribor: the acute shortage of peripheral equipment; the lack of coordination between ministries; and the tendency to prolong production of the same machines as long as possible with little concern for modernization. He mentions Minradio's three-year delay of the ES-1050 and the ES-1060, the complete failure to meet the ninth five-year plan's target for time-sharing centers, Minpribor's delay of minicomputer production, the Ministry of the Electronics Industry's two-year delay in introducing integrated circuits, and so on.[31] With regard to the first point, Rakovskiy seems not to be taking into account the repair problems brought up by the chemical industry. Without a good repair network, complex systems with lots of peripherals are worse than simpler systems. His third point brings up the question of goldplating, a habit of many Soviet technology suppliers to make cosmetic adjustments in a product in order to obtain approval for higher sale prices and to win bonuses for new product innovations. Needless to say, it is in the interest of the state's central planning agency to minimize waste of scarce resources on false innovations.

Rakovskiy is not really a third party to disputes between clients and producers in the computer sector, however. As chairman of the CMEA Intergovernmental Commission on Cooperation of Socialist Countries in

- 37 -

the Field of Computer Technology, Rakovskiy blames problems with computer use on "those who work with the machines--not on the operators, programmers, and debuggers for the most part, but on the managers, the people who organize the work.... Unimaginative, irresponsible people should be permanently barred from access to equipment costing tens of millions of rubles and from the solution of problems on which the efficient operation of entire branches and the entire economic mechanism depends."[32] Incompetent client management begins to emerge as a major impediment to technology diffusion.

Client Competence

Moldavia provides two examples of problems apparently brought about largely by client bloody-mindedness. Two research institutes belonging to Moldavian Gosplan established identical computer centers featuring identical machines (the ES-1033) with complete staffing that subsequently suffered "considerable underloading"--and only an internal partition separated them! Intervention of Republic Gosplan officials finally succeeded in unifying the centers of the two research institutes. In another case, the Ministry of Housing and Municipal Services of Moldavia refused to introduce an ASU specifically designed for housing facilities. A similar system, they claimed, was under in-house development. When the republic Communist Party bureau asked the managers of the local (rayon) production administration for housing to visit, two years later, it found the system still to be under development. "Nevertheless," explained the managers, "there is no need to use someone else's." The writer of the article, a first secretary in the Frunzenskiy raykom at Kishinev, explains that a bureau session and a "serious talk" with the housing administration managers corrected the

problem. [33] This case is important both as an example of the difficulties posed by uncooperative clients to the computer sector and as an illustration of the manner in which the Party may intervene in industrial affairs.

A foreman and an electrician at the Cherepovets Nitrogen Fertilizer Plant offer another example of a computer-sector client abusing its ASU. In this case, the press reported as innovative a management group subsequently accused of practicing the "grossest deception." In December 1973, the plant installed an ASUTP, receiving a bonus and press acclaim. In September 1974, another bonus and further acclaim followed installation of an automated regulation system for natural gas consumption in a process reactor. April 1975 witnessed the installation of an automated system for turbine temperature stabilization and for post-reactor gas regulation. In December 1977, the plant put into operation an automatic regulation system for acid concentration (an automated titrator). By 1978 all systems were 95 percent down. The writers attribute this to low prioritization of mathematical modelling, algorithm development and computer programming; to understaffing; and to the allotment of only two two-hour preventive maintenance sessions yearly for the plant's N-6000 data processor. The computer operators, as a result, are nearly always unoccupied. The writers also critize the placement of personnel with "worker credentials" in high section positions while many computer engineers elsewhere are seeking better jobs than they have. [34] Although this case certainly illustrates the claim that poorly designed incentives (such as the bonuses for mere computer installation rather than truly innovative employment of the technology) can ruin outcomes in an industrial sector, it serves also to

- 39 -

strengthen the argument that technological advances have trouble proceeding in the USSR without prior client support. This is not a universal truth: photocopier development proceeded in the U.S. even though original market research projected saturation at 100 machines.

In 1977, construction used more than 480 ASUs. Severe shortcomings resulted from the predictably inadequate lines of communication between building sites and the computer centers. Plans were made quicker without the computer.[35] But what sort of surprise is this? One wonders why this client (the several ministries of construction) would invest in computer centers without a decent telecommunications network.

By the end of 1977, Gosplan established a procedure requiring ministries that placed orders for computers to guarantee the equipment would go into operation immediately. Special commissions would make on-site visits to determine compliance with this rule.[36] The measure is draconian if it threatens to stifle client-initiated innovations in computer usage. From this we may conclude that the situation was as bad as suggested by the occasional articles on advanced equipment lying dormant in remote industrial centers for lack of easily available equipment such as transformers.

A case with a certain indisputable charm adds to the evidence stacking up against computer sector client management:

A multiple-user computer center of the Moscow Trust "Soyuzorgsantekhmontazh" was installed in Volgograd. However, no one was concerned beforehand as to where the equipment was to be placed. The Minsk-32 computer was stored for a long time in the warehouse. Later it was placed in the basement of the youth hostel in the immediate vicinity of the elevator shaft and the main pipelines next to the laundry and two shower rooms. The results of such an environment appeared shortly. Hot water inundated part of the machine room and the computer required thorough overhaul. After several months, hot water also entered the cable channels of the computer.[37] (The irony of the plight of this Minsk-32 comes out when one considers the scarcity of hot water for use by humans in any East European youth hostel.)

The general director of the Elektronmash Production Association of Kiev asks what, if not client competence, explains the variance in outcomes in the effort to distribute his computer systems broadly and effectively. The Nizhniy Tagil Metallurgical Complex received a system in December 1975 without calling for adjustments until the beginning of 1977, after the guarantee period had expired; while the Rustavi Metallurgists installed a similar system within four months. (An article in the 2 August 1978 Izvestiya claims Minpribor never supplied a complete set of equipment to Nizhniy Tagil. The lack of complete sets of equipment seems to afflict all clients to some extent, however.) From February 1976 to mid-1977, 56 out of 94 Elektronmash computers produced were inoperative because of customers' lack of preparedness, unfinished installation construction, absence of sensors on technological lines (the data input for an ASU), switching problems, secondary-device failure and lack of qualified personnel. A single institution carries out all personnel training for the Elektronmash M-6000 and M-4030 computers which is clearly unable to fulfill all requests. The production association has even developed a special startup and adjustment service to hasten computer installation, but the results are discouraging: average start-up time remained 7.4 months rather than sinking to the projected four months. The Elektronmash director stresses that clients should provide people who at least know why the machine is needed, and that prospective computer tasks should be solvable and prepared in advance.[38]

- 41 -

The trouble is that customers often expect Minpribor to take the initiative in solving problems. Thus we read: "The creation of simple and precise instruments for the remote analysis of fodder is a completely soluble problem, and the working people in the villages have a right to expect that Minpribor will cope successfully with it."[39] Or again: "It is the direct duty of Minpribor to take up the production of specialized apparatus for greenhouses. So far, however, orders are placed only after a lengthy process of persuasion." [40] An article from Tashkent cites inadequate air conditioning, insufficient space, and lack of designer-supplied automated management tasks as reasons for underutilization of its ASU.[41] One wonders with the Elektronmash director what a client is expected to provide, if not at least the computer's tasks.

Incentives and Reform

The frustration that clients of the computer industry seem to feel during the absorption of this difficult technology finds expression in the adoption of adversary roles pitting client against supplier. One remarkable article traces the introduction of an ASU at the Minsk Garment Manufacturing Association. The association received the computer due to its steady growth and data flow, having planned nine tasks for the electronic computer and four for punched-card equipment. Yet the ASU became nothing more than an "automated bookkeeper," losing four tasks due to inefficiency and apparently gaining none. The article cites poorly conceived integration with customer operations and the absence of specialists and "technical facilities" as reasons for the poor utilization of the computer. The ASU section of the Minpribor

- 42 -

Minsk Production Association "Krupskaya" then designed tasks for the garment association -- recording and analysing product quality, results of intra-factory socialist competition, and labor performance. [42] This stands out as an example of a supplier taking the initiative to perform applications engineering for a client. It is unusual in the Soviet context. The garment association would seem to have gotten a fairly good deal out of it. The upshot of the article, however, was to blame the developers (presumably someone other than Krupskaya, who seem only to have designed some software) for discrepancies, errors and inadequate utilization. In this example of adversary exchange, the designer has suffered.

In fact, the designer does not fare well in a large number of documented industrial disputes between computer producers and their clients. Any Soviet trade journal touching on computers will include articles about designer negligence. In the cases where the client does not appear to have reason on his side, it is worth asking what motive he has to point the finger at a hapless computer designer. One commentator attributes the lack of proper preparatory work at enterprises planning the introduction of an ASU, and the subsequent lack of imagination in using facilities to complete capacity, to the tendency of some directors to "pass the buck" to subordinates.[43] This delegates responsibility for assimilation of a computer to executives who lack the authority to carry it out. The result is that subordinates are unlikely to get cooperation from coworkers in overcoming the design snags inevitable in a new installation. This produces feedback that overstates the inadequacies of the system design.

- 43 -

We must not pin all the blame for client frustration with computer suppliers on the client organization's management, however. Employees often have the greatest reason to resist technological assimilation. One builder's trust abandoned its computer after discovering its employees withheld data for fear that "management can see each day how little work we do."[44] Any automated system of management (ASU) designed to rely on information that it is not in the informant's interest to provide is simply doomed.

It would be wrong to leave the impression that negative feedback from clients to producers in the computer sector is always unjustified. The attempts of Ninpribor to reform itself and of Gosplan to reform the incentives of buyers stem partly from supplier mismanagement, after all. The "Sigma" ASU is unusually friendly in that it hooks up to an enterprise's production operations particularly easily. A state commission endorsed the Sigma project, and many greeted it with enthusiasm. The research institutes and design bureaus that have recently grown to depend financially on assisting bewildered enterprises in incorporating new ASUs, however, have all but blocked the Sigma. More generally, state and ministerial standards for task design have proven too rigid for the needs of individual enterprises. [45] In both cases, the difficult job of the enterprise to implement a novel technology is made intolerable.

The tendency of supplier and client organizations to adopt adversary roles is hardly the simple result of a fractious nature shared by Soviet managers. The pressures on an enterprise director to remain independent of both suppliers and clients is often intense. Ministerial

- 44 -

and central agency officials aiming to spread computers throughout industry seem to fail to take the client's organizational environment into account. The supply administration for academic research (Akademsnab), for example, fulfills only 1/4 of the orders the Ukranian Cybernetics Institute makes on behalf of its experimental plants. When the Institute requisitioned 130 kilometers of installation cable and Akademsnab provided only nine kilometers, messengers immediately "galloped off in all directions" to try direct contacts. They eventually found cable in Kiev, Chernovtsy and L'vov. The use of scrap materials is frequent. The Cybernetics Institute apparently manufactures its own circuit boards. (The author of the article makes the incredible claim that everyone in the Soviet Union involved with circuitry makes his own boards.) The Institute has an automated operation for plate exposure and etching, circuit board assembly technology and surface soldering capability. Sadly, the Institute could expand production quite easily to supply all academic institutes. [46] But such cooperation is unlikely.

In 1971 Gosplan and an interdepartmental council on the improvement of national economic management found themselves stalemated in an effort to establish a large-scale integrated computer center in Tula, despite Party support, because of the negative attitude of Tula industrial ministry officials toward the innovation. These officials "stubbornly continued to establish individual computer centers at enterprises and organizations, often without sufficient economic grounds..."[47] The reason, of course, was not so much stubbornness as recognition of the importance of industrial independence in what amounts to a system of bilateral adversary relationships whose outcomes are unpredictable.

- 45 -

Another writer asks why one small Volgograd Plant of Tractor Parts and Specifications needed the fancy ES-1030 computer when it could use only about 15% to 30% of its capacity. The reason given is that the enterprise became independent with the acquisition of its computer, able itself to sell machine time, and not reliant on a new set of service providers. A GKNT representative was able to maintain the interest of Volgograd industrialists in a proposal for a municipal computer center precisely until he suggested building the center for the principal prospective user, the Central Statistical Administration. This writer advocates multiple-user computer centers on logistical grounds (especially repair organization), but despairs of the degree of cooperation necessary to realize them. As a second-best solution, he approves of the secondary redistribution of machine time occuring through the efforts of enterprises like the Volgograd Plant of Tractor Parts and Specifications. He opines that this redistribution will proceed on a basis "nearer the real needs for machines rather than on the strength of departmental affiliation or a privileged position."[48] The primary message, nevertheless, is that there are strong reasons to guard independence in Soviet enterprises. The chapter on agricultural machinebuilding particularly illustrates the adversary system in which these pressures result.

Repair is another bone of contention between suppliers and clients in the Soviet computer sector. The Glazovsky regional Sel'khoztekhnika (for farm equipment supply) acquired a 1435-ruble Elektronika-155 electronic-keyboard computer from the Sverdlovsk Experimental Plant Spetsavtomatika. After two years it broke down. A shop foreman of the Sverdlovsk plant promised repairs within a month. The Glazovsky

- 46 -

director of planning still had not seen the machine after another year.[49] The question whether the plant producing the Iskra-110 computer was obliged to repair it appeared in *Ekonomicheskaya Gazeta*. A Minpribor reply explained that the Tbilisi plant no longer produced the Iskra-110 and that the client should direct questions to a branch plant of Spetsavtomatika in Biysk, in the Altay![50] The ministries are nevertheless attempting to repair at least third-generation equipment--woe to the owner of a second generation Minsk-32 or a Nairi. The Leningrad division of the Moscow State Experimental Plant for Repair of Computer Equipment of the Soyuzschettekhnika Association serves only TsSU branches, and only for work on imported machines. Spetsavtomatika services domestic machines, as implied above. Minpribor operates both. [51]

CONFLICT RESOLUTION

If Minpribor has been slow in responding to the need for a better articulated repair network, the sector as a whole has at least moved in other ways to aid clients in digesting new technologies. One example is the Leningrad Institute of the Methods and Techniques of Management, which furnishes teams to train management cadres in the use of computers. Higher level administrators get one month, middle-level administrators get up to two months, and ASU workers get up to four months training.[52]

Ninpribor has created an information-reference system (SIF) to adjust software in the process of starting-up. Minpribor also operates an organization out of Kalinin for the central supply of programs and algorithms for its computers. Rental of equipment eases the client's burden, since a dissatisfied lessee can easily divest himself of

troublesome machines. The Leningrad Region Naterial and Technical Supply Administration under Minpribor rented measuring and control equipment to 1000 clients at 5% value per month in 1978.[53] Factory outlet stores, moreover, have appeared in both Minradio and Minpribor to study demand, to publicize new products and raise trade levels, as well as to trouble-shoot. Not surprisingly, local trade ministries advocate such outlets strongly, shifting, as they do, the burden of facilitating trade to the production ministries.[54] Unwilling to leave the technology he helped create in the opportunistic hands of Minpribor, Glushkov proposed an agency to act as a purchasing agent for ASUs just as the Ministry of Communication acts as a purchasing agent for the telecommunications sector.[55] One may gauge the prospects for this suggestion by the mixed success of Sel'khoztekhnika, the purchasing agent for agricultural equipment. (This receives attention in the next chapter.)

The interplay between clients and suppliers in the computer sector suggests that some officials are trying to reduce the adversary roles here that proliferate, as we shall see, in other sectors. It is plausible to interpret this as an effort on the part of computer advocates interested primarily in rapid introduction and diffusion of the technology to get around the obstacle of client incompetence. If client competence were not an issue, it is hard to see why so many marketing initiatives should first have seen the light of day in a sector requiring extraordinary technical expertise. (Such initiatives have a longer history than the tenure of Rudnev at the head of Minpribor, so we cannot attribute it all to his energy.) In this context, client incompetence means technological incompetence. But the rapid development of a marketing or diffusion function in the computer sector may seem to be an attempt to get around obstacles posed by an incentive structure that rewards computer acquisition (by enterprises) instead of computer applications, rather than obstacles posed by incompetence. Indeed, the computer sector might well benefit more from incentive reform alone than either of the other sectors studied in this essay. The proper motivation of industrial managers to seek innovative ways to apply ASUs for the purpose of streamlining industrial operations would arguably result in a taut market, however, that would grow to share fully the adversary characteristics, say, of agriculture machinebuilding or industrial construction. Without a price system automatically to determine resource allocation, the best intentions in the world might not improve outcomes in the Soviet computer sector.

A final case reinforces the suggestion that allocative problems in the computer sector go beyond the incentive structure. Some mainframe computers require two-tier, or false, flooring. The Central Scientific Research and Planning-Experimental Institute for Industrial Buildings and Structures rebuffed one unfortunate plant director seeking a complete interior for his computer center. They had only false floors, available in steel with a long waiting list at a Moscow plant, and available in aluminum with a shorter, five-year waiting list (but requiring the client to supply the raw material) at Riga. Researchers at the Institute for Commercial Buildings agreed to design a new interior for the plant director--at a cost of 196 rubles per square foot and requiring ten tons of aluminum. They sent a request to Gosplan to allocate 20,000 tons of aluminum per year for computer room interiors. Gosplan reportedly told them "to think it over some more." Naturally enough, they designed a false floor of steel.

- 49 -

Note that both the Kurchatov Institute of Nuclear Power and the L'vov Elektron Association have large computers happily resting on woodchip sheets. A woodworking enterprise can construct the entire floor at small expense, without consuming scarce resources, with no wait, and with the dignity of prosecuting a Soviet invention that Western interior designers are beginning to emulate. An official at the Institute for Commercial Buildings remarked: "Of course we know about the invention (of wooden interiors), we have known for some time. But we have rejected the wooden design: it's not modern." The author comments that they are strong-minded people at the Institute, not wishing to slip off the peak of scientific and technical progress. He concludes with the suggestion that the Soviet Union start making aircraft from wood-chip sheets to save aluminum for computer room interiors. [56] The case raises the question of what decision procedure allocates aluminum among rival claimants. If the fate of the Soviet Union's aluminum resources rests on bilateral adversary negotiation, no incentive structure can completely overcome the damage done by poor feedback to the decisionmakers ultimately charged with its allocation. It is interesting to note that reform of the incentive structure governing the actions of rival claimants for scarce resources such as aluminum does not by itself guarantee an improvement in the usefulness of feedback from those claimants.

The general problem here is that it is impossible to tell whether the level of investment in a new technology--be it imported or the result of domestic research and development--is too high or too low if the technology lacks practical application to gauge its worth. One

- 50 -

group of writers at the Svetlana Association argues along these lines against the mass-production of microcomputers prior to clear industrial uses for them. [57] But if it is true that decisions regarding investment result from a bargaining process in which client competence is more important than true client demand, then the sort of technological overinvestment that the Svetlana Association writers wish to deter will continue even if applications for novel technologies materialized in advance on the spreadsheets of planners all over the Soviet Union.

To recapitulate, the examples of this chapter should establish the impact of clients' technical competence on Soviet industrial outcomes. This need not be the case. Many firms make a business of performing applications engineering for clients lacking any particular technical expertise. In is excellent overview of Soviet computing, Goodman writes: "IBM does not owe its continuing large share of the mainframe market to the technical superiority of its products, but to the scope and quality of its customer service and its aggressive concern for its customers' needs." [58] As a second task, this chapter introduces the question of what sort of decisionmaking system might result in such a sensitivity to client competence. Although the computer sector does not offer enough evidence to support a decisionmaking model, the prevalence of industrial disputes between its clients and producers suggests a role for an ad hoc arbiter. Goodman points out: "One of the most important of the self-assigned tasks of the Communist Party is to expedite all sorts of governmental and economic activities; it intercedes to get things done." [59] The evidence assembled here supplies a couple of examples; most likely there are many others not discussed in the journal

- 51 -

literature. The chapter also comments briefly on the possibilities of efficacious reform in the incentive structure in the computer sector. If unarbitrated adversary roles do characterize Soviet industrial relations, the reform of incentives alone will not improve economic outcomes. The supplier must worry about the client putting up a smokescreen of complaints if technological application proves difficult; the client will always try to get some free applications engineering out of the supplier.

Taken together, the material in this chapter casts doubt on the strawman position that the Soviet planning apparatus reliably detects domestic technological lags and soundly responds with investment in domestic research and development or even foreign technology. Such detection and response, after all, requires extraordinary information and decision patterns. It is unclear that the Party, despite its interest in interceding to get things done, has the resources to pick up where the industrial decisionmaking system demonstrably leaves off. Once again, Goodman provides a synopsis: "The CPSU does not have the ability to exert pressure on behalf of each of the thousands of computer installations in the USSR, nor is it apparently interested in diluting its own unique strengths by letting non-Party organizations exert such pressures." [50] For a closer lock at conflict resolution and the decisionmaking process, however, it is necessary to turn to agricultural machine-building.

- 52 -

III. AGRICULTURAL MACHINEBUILDING

The Soviet agricultural tractor sector suffers from too much horsepower and not enough reliability and rejuvenation of older machines. This is probably the effect of a supplier following the path of least resistance and a client failing to provide responsible feedback. The pricing system protects farmers from the increases in wholesale prices that reflect equipment upgrades: farmers pay retail prices that remain relatively constant from year to year. For this reason, the buyer's cost share of price differences between old and new machines is zero. The other characteristics determining client feedback balance out. Some argue for greater client concern about tractor and other farm equipment supply and thus for more useful feedback on tractor effectiveness; some argue the reverse. Substitutes for extra tractor power exist, but are not cheap; the center exerts pressure on agriculture but diffuses it over the equipment suppliers as well as the farmers; agricultural output is sensitive to tractor performance although climate probably masks the effect; and change in the basic technology is slow-paced (although accessory equipment technology appears to be changing rapidly). All in all, the main characteristic in the balance remains the lack of financial responsibility of the users for price differentials between old equipment and new upgrades. This lack of financial responsibility appears to create user feedback that misdirects farm equipment suppliers and causes the adversary system to misinform the center on agricultural equipment needs.

- 53 -

With agriculture, the Soviet Union puts its worst foot forward. As a consequence, the sector receives much diagnostic attention in the Soviet press, providing abundant material to document the adversary system that seems to dominate low-level decisionmaking in the country's nondefense economy. This system, once again, features a proliferation of adversary relations between suppliers and clients with no fixed procedure (beyond ad hoc Party intervention) to adjudicate disputes between the two. The presence of a central purchasing agency for farm equipment, Sel'khoztekhnika, complicates the relationship between farmers and agricultural machinebuilders and offers a variation on the pattern of incompetent consumers found in the computer sector.

The following pages introduce agricultural machinebuilding in the Soviet Union with an account of Party desiderata, plans of the Ministry of Tractor and Agricultural Machinery Construction (Mintraktor) and the Ministry of Machinebuilding for Livestock and Fodder Production (Minzhivmash), and a sketch of the Soviet tractor fleet. The chapter considers the management of factors influencing performance of the agricultural machinebuilding ministries, particularly foreign trade, industrial organization, research and development, finance, and labor. The section turns then to several illuminating cases on client interaction, involving equipment for private plots, repair service, produce transport, grain elevators, and chemical fertilizers. The chapter concludes with a discussion of the role of the Party in conflict resolution.

With each annual Soviet agricultural shortfall, blame falls on the size and power of the Soviet tractor park. Although Soviet perception

- 54 -

and resolution of industrial problems is the proper focus of this study, it is worth comparing Soviet and American outcomes in tractor production and maintenance for the sake of perspective. In 1975 the Soviet Union produced more than twice as many tractors as the United States, albeit of lower horsepower on average. [61] The number of new tractors, therefore, does not promise to explain shortfalls in Soviet agriculture on its own. Shortage of spare parts, on the other hand, might be a problem. But spare parts production turns out to favor Soviet .

Soviet spare parts production in 1974 was roughly equivalent to 350,000 new tractors, whereas U.S. spare parts production, for the same year, was the equivalent of about 64,000 tractors. [62]

(Surprisingly, Soviet demand for spare parts still managed to outrun supply.) Even tractor retirement rates are comparable in the two countries, although Rubenking notes that the U.S. can better afford this as its park has long been near saturation. [63]

One possible conclusion is that Soviet tractors must be technically retarded in comparison to their American counterparts for large disparities in agricultural outcome between the two countries to persist. The fact that the Soviet Union principally imports not agricultural tractors but specialized, high-powered tractors for industrial applications such as laying gas pipelines, ripping ground in permafrost regions, and forest-clearing, [64] suggests that the most challenging applications do draw foreign technology. But it is worth noting that the Soviet Union is importing tractors for use precisely in those sectors where Sel'khoztekhnika and the state farms do not play the role of customer. This chapter pursues the hypothesis that the nature of the customer strongly influences both the success of technology employment and the decision to repair or retire old tractors. The adversary bargaining relation between the Soviet client and supplier (in this case either Sel'khoztekhnika or a Soviet foreign trade organization) ultimately links client characteristics with industrial decisions.

INDUSTRY STRUCTURE

Investment Policy *

Soviet policy has emphasized the importance of expanding and modernizing the capital base of agriculture. The scale of investment has been extraordinary. Annual agricultural investment quintupled between 1960 and 1980, reaching a quarter of the nation's total (compared with 4° for the U.S.). [65] An article written in 1977 declares as a goal of CPSU agrarian policy the "complete mechanization and automation of all production processes." [66] Many Party declarations look clearly to the agricultural machinebuilders to rescue agriculture. The pressure in agricultural equipment construction has consistently been on the supplier.

The supplier has reacted to this pressure with strong statements of intent to fulfill ambitious output targets. Mintraktor has been able to keep fairly close to these output targets, in some cases: in 1974 it announced the intention to produce 575,000 machines and fell short by only 4°.. The figure is typical for the early 70's. The ministry has stated the desire to raise tractor power, to develop new grain harvesting combines, and to produce plowing and industrial tractors and machines for lumber (the country, as noted above, has had to import machines in the latter three categories). To this end, Mintraktor's

- 56 -

principal plants have stepped up development of heavy tractors for industrial use. The Chelyabinsk factory began work on the 160 hp T-130 tractor. It undertook, in addition, the design of several supertractors (220 hp, 300 hp, 500 hp Bogatyr type tractors) for production at the new plant in Cheboksary. [67] The tenth five-year-plan (1976-1980) has Minzhivmash increasing production of pick-up balers, grass-meal preparation equipment, milking units, feed distribution mechanisms, cleaning equipment, and large-scale livestock-handling equipment. The plan calls for an increase in the ministry's stock of integrated sets of equipment from 35 to 72. In addition to quantity, the ministry expected to emphasize quality in its new products: the percentage of products receiving the state seal affects a branch's ability to secure internal reserves within a ministry. [68]

The Ministry of Agriculture (as the ultimate client of the agricultural equipment sector) includes some big fans of heavy industrialization as the cure for the Soviet Union's agricultural ills. The chief for the Use of Nachines in the Ministry of Agriculture, for example, defines technical progress as increase in the unit capacity of mechanics, machine specialization, development of sets of machines for production line mechanization, electrification, microclimate control, breeding equipment development, design of industrial monitoring equipment, and development of automatic flow lines. [69] Power-worker ratios (which reach 20,000 kW-hours per year in mechanized farms and 150,000 kW-hours per year in industrial-type complexes) and labor-hours expended per unit of product are key criteria for assessing agricultural progress, according to this official. [70] It is striking that both the criteria he mentions are partial: power-worker ratios neglect the cost

- 57 -

of electrification and the utility of power capacity in agriculture, while labor-hours-per-unit-product neglects the cost of capital employed in minimizing worker time. The emphasis on unit costs rather than marginal costs is a mistake shared by U.S. Federal budgetary practiceit is possible to minimize average costs at a level where marginal cost and marginal benefit remain greatly out of line. Where both the ultimate client and the supplier agree on more, bigger and better, it is unlikely one will find anything other than massive investment in equipment to the possible prejudice of better allocations of the sector's resources. An example of an alternative to be considered later is greater expenditure on prolonging the lives of tractors due to be retired. The fact we see so much premature retirement of agricultural enuipment in the Soviet Union may be testimony to effective bargaining on behalf of sovkhoz tractor operators who like new machines.

One of the largest planning problems with the culrent Soviet tractor fleet is the lack of complementary equipment. The K-701 tractor is 2.7 times more productive than the DT-75 but 5 times more costly, as it requires "a complex of appropriate mounted and drawn implements" with combined operations. A Gosplan official remarks:

All of this...requires a well-defined scientifically formulated system of machines and implements which, unfortunately, we do not presently possess. [71]

Brezhnev criticized the K-701, along with the K-700 and the T-150, because their trailer attachments were coming too slowly off the production line and their efficiency ratings dropped sharply when used with smaller trailers designed for other machines. This has given rise to a generation of self-propelled combines, including the curious SKP-2, which is designed to pick tomatoes and separate the red from the green with a possible application (?) to onions, peppers, and cabbages. [72] The state of the fleet of K-700 tractors (the predecessor to the K-701) puts in perspective the hopes for the current machine: only 60% were still operating in 1975, 20% were "correcting trouble," 13% were at "technical standstill" and 6% were inoperative "for organic reasons." [73] Such an inoperative rate for a new tractor in the taut Soviet agricultur3 sector prompted a surge in larger tractor production without attention to balanced planning of whole sowing and harvesting systems. We must ask why farmers' needs do not feed into the planning system.

Organization

The Cheboksary Tractor Plant, a new enterprise which has untertaken production of 220-500 hp Bogatyr type supertractors, has been having trouble which offers an insight into organization and planning in industrial start-ups. Although the general contractor and not the purchaser is primarily responsible for the "introduction of (industrial) capacities," the Cheboksary plant directors must share the blame for the delay of construction of several new production areas at the plant. The trouble is that the plant altered plans for its prospective paint shop partway through construction without supplying the nonstandard equipment it was building for the construction contractor. The plan changes were a response to defects in the work by the Khar'kov project planning organization and its Saratov subcontractor. The article writer suggests the plant planners are responsible for their tardy recognition of the errors in the incoming plans. On the other hand, the writer met the senior job supervisor of a Construction Administration responsible for completing hook-ups in a welding shop. Asked why no workers were to be

seen on the site, he "looked at his watch as if to say it was lunch time. But at my suggestion that we wait for them to return, he acknowledged that the workers had been transferred to a different sector." The supervisor's manager was unable to explain the transfer. This is simple shirking on the part of the contractor.

The writer proposed careful monitoring of the welding shop operation by the Cheboksary City Party Committee. The City Committee, however, balked, as its division of construction and municipal services was unsure whether the state commission's affidavit accepting the production areas according to the original (1978) plans had been ratified. The article writer condemned the lack of constant monitoring by Party bodies and the mutual irresponsibility of the purchaser and contractor. [74] The upshot of the article, incidentally, was for the Cheboksary City Party Committee to agree that the plant directors irresponsibly altered construction plans and that the contractor failed to organize the work properly. The Committee reportedly intensified its monitoring operations at the tractor plant. [75] The Cheboksary Plant is hardly a minor operation, so the project is unlikely to suffer from lack of priority. It appears that both the purchaser and the contractor, in this case, required discipline from the City Committee, as well as arbitration and general administration. The City Committee is either incompetent or overburdened. This is an example of judical backlog in an adversary system that cannot afford it.

The management of industrial organization seems to create problems for Nintraktor. Plans called for the Belorussian Tractor Corporation to incorporate seven plants surrounding the Ninsk Tractor Plant. These plants were subordinate to four different industrial administrations

(glavki). Only the four likeliest plants ever came together, because the administrations protested the loss of subordinate plants, and "plant directors...would not protest against the wishes of their main administrations." [76] The plant directors evidently had reason to fear the administrations they would be leaving behind. In another case, an author from the All-Union Institute of the Mechanization of Agriculture complains of the subordination of Mintraktor enterprises to several agencies controlling material allocation. Better by far for one agency to regulate all supplies. (That this is not the case may reflect the difficulty of monitoring an operation with one coordinated supply channel. The proliferation of supply authorities causes disputes which are easier to check, if not to arbitrate.) The author of the source article documents GKNT action that split his research project between Mintraktor and the Lenin Academy for Agricultural Science (VASKhNIL), with the result that the project failed to produce a method for increasing tractor speeds. As a consequence, he claims, the Soviet Union has no high-speed inter-row cultivators, no tools for the NTZ-80, and delays on the T-150. [77] His perspective makes his assessment unreliable, but the organizational problems are clear.

Repair and re-use of obsolescent tractors is another way to reinforce the farm machinery sector, but one that the Soviets do not exploit. This is surprising, since one commentator writes that new production cannot reduce the fleet deficiencies by more than 30% and sooner than in one amortization period (eight years' time). He suggests redistribution of the fleet after tractors have undergone repair work. Thus Sel'khoztekhnika could distribute all new models in bulk to the strongest farms rather than supplying a few units to each farm. The

- 61 -

weaker farms would acquire used models. Such a practice would correspond to current British and American practice, where cash-rich farms can invest in new equipment while re-selling obsolescent equipment to cash-pinched concerns. [78]

Research and development, as the Central Committee declarations all suggest, is a crucial input in the agricultural machinebuilding sector. The research, moreover, is not entirely at the level of technical engineering. The elevated Lenin Academy of Agricultural Science (VASKhNIL), for example, declares its goal to include: the satisfaction of food requirements, increase in food quality, increase in the effectiveness of production, increase of labor productivity, the transformation of agriculture into an industrial sector, decreased dependency on the weather, the transformation of the relations of production (private to public), the elimination of disparities between city and country, and the protection of the environment. [79] Regrettably, there is no category addressing trade-offs between these goals, such as between transformation of the relations of production and satisfaction of food requirements.

Nore than this, however, sheer abstractness complicates the R&D function in agriculture. The 150 research and design institutes and technical bureaus, the 21 higher educational institutions, and the 80,000 researchers of the city of Khar'kov saw 35% of their research projects implemented in 1971; the Ukrainian Scientific Research Institut of Agricultural Machinebuilding had a record of 10 in 26 technological deployments. One of the reasons given that the numbers are not higher was the lack of experimental production facilities in the city. The Khar'kov Party City Committee and the Interindustry Territorial Center

- 62 -

of Scientific Technical Information and Propaganda held a conference on the subject, recommending khozraschet and improved implementation incentives. [80] "It is not Minerva, however, but Vulcan who tends the forge..."

This is not to suggest that an army of pragmatic-minded researchers would cure Khar'kov's problems with implementation of research developments. Consider the case of hardened piston rings at the Research Institute of Technology of Tractor and Farm Machinery Construction. The Institute Director, Ignatyev, approved a cooperative project with Avtodizel (a research and production "corporation") in 1971 to try to increase the life of piston rings. An Institute associate, Vaystukh, approached Avtodizel deputy director V. D. Arshinov at Avtodizel's Yaroslavl plant. Vaystukh's calculations suggested that special hard coatings might double the longevity of piston rings and reduce fuel and oil consumption, with a resulting savings approaching 5 million rubles for the auto industry alone. Arshinov was interested. Ignatyev apparently incorporated the project in the Institute's 1974 plan, but suddenly issued a stopwork order several months later. An Avtodizel chief asked the Institute why work had ceased when he in fact wanted to accelerate the project: Minavto (the Ministry of the Automotive Industry) had expressed willingness to invest R300,000 in the project. The Institute's welding chief, a supporter of the project, showed the Avtodizel letter to Ignatyev, whereupon the Institute director fired him. The Ministry of Agricultural Machinery (now Mintraktor and Minzhivmash) supported Ignatyev in the contention that the project was never formally part of the Institute's research program-it was Vaystukh's private work. Thus Ignatyev seemed to be concerned

- 63 -

that he would be responsible for research outside his control. Minavto reassigned the work to another institute. [81] Questions of turf and bureaucratic property can impede innovation as much as unpragmatic research.

Soviet commentators are clearly very sensitive to these turf battles between institute and enterprise directors in various ministries. The theme of resentment toward administrative barriers interfering with scientific or technical progress recurs frequently, but unaccompanied by any attempt to explain the importance or origin of those administrative distinctions that make up the ministerial system. Jerry Hough and John Moore, in their different ways, have each suggested that the turf battles and adversary relations arising from ministerial and branch organization serve a direct purpose related to the maintenance of Party control. Hough argues the prefectural system prevents the formation of stable, bureaucratic, autonomous lines of command; while Moore thinks the failure of the Soviet system to innovate is small compared with the savings in agency costs that it enjoys. The present cases in no way dispute these generalities, but try instead to characterize the decisionmaking process that inspires so many abstractions and general observations. The following reported comments on the status of the design organization are interesting not so much for their possible naivete, therefore, but as an illustration of the response of an industrialist to the many complex and confused sets of overlapping jurisdictions that create the adversary system in Soviet industry.

It is apparently the duty of the Academy of Agricultural Science and the USSR and republic Ministries of Agriculture to specify

- 64 -
requirements for new technology; the design bureaus of Mintraktor attempt to build prototypes in accordance with these specifications. Design bureaus, according to one commentator, should therefore have authority over projects straddling several branches of agriculture. Along the same lines, he argues R&D centers within production corporations should be independent subdivisions. The managers of these institutions, accordingly, require expanded authority, so as not to be dependent on the authorization of a single industrial branch for supplies. These managers should also be able to call on talent from other organizations. Only the ministry (and not the branch or administration chief) should appoint a design bureau director. The director needs both the right to represent his organization in technical planning for the ministry, and the right to establish business contacts. [82]

This commentator is seeking a design bureau director in a position to overcome adversary disputes affecting the bureau. We may similarly interpret the drive to append NIIs to plants and to attach experimental plants to NIIs as an attempt to bring one set of adversary relations-those between rosearcher and producer--under one reliable arbiter (namely the director of the original organization). Other forms of industrial integration abound in the agricultural machinebuilding sector: there are inter-enterprise establishments created through the finances of shareholder institutions; agro-industrial enterprises, or mechanized farms; production associations consisting of administratively independent member institutions; production agro-industrial associations; and of course the scientific-production associations mentioned just above. [83] Whether or not we wish to regard these forms

- 65 -

of integration as effects of the adversary system or even attempts to evade it, we must recognize that they are altering the landscape upon which any industrial decisionmaking system rests. There is no evidence to suggest these forms of integration will succeed in improving arbitral procedures for conflict resolution. But the attempts, themselves, testify to the handicap imposed by the lack of such procedures. One commentator even attempts to quantify the loss to agriculture due to the bureaucratic, pre-integrative, "branch" approach: the branch approach, he argues, encourages departmental autonomy and thus sub-optimization. This has arguably caused a shortage of grain-harvesting equipment, resulting in a 20% loss of grain in some oblasts; and a shortage of transport vehicles and poor roads, resulting in a loss of 3% - 5% more grain and 10% of the sugar beet crop. [84] This puts the cost of maintaining Party control through a system of mon; tored chaos quite high.

Foreign trade has complemented agricultural equipment development in some cases. The deals are often quite specific with respect to geographic area and technological application. For example, GKNT agreed in 1977 to import vegetable farm equipment for Moldavia from FMC. More interesting is the continuing role of Sel'khoztekhnika as quality controller in these transactions. Thus Krasnodar stations tested the John Deere "HR-50" before accepting it for import. As a result, foreign firms must maintain good relations with Sel'khoztekhnika even though the latter agency does not purchase foreign equipment. [85]

- 66 -

Prices

Prices and costs are important in determining outcomes in the farm machinery sector, too, although prices tend to supply information (of a sort) to planners rather than rules for deciding whether to buy or sell. Price per unit of power serves as the criterion for justifiable increases in the prices of wholesale equipment. (This may seem rather inflexible, but it probably guards against goldplating.) The KKS-6 castor-oil plant harvester, for example, replaces the KKS-4 with a price of R 12,280 (for industrial buyers)/R 9935 (agriculture) compared to the previous R 9000/R 7650. KKS-6 productivity is 1.18 hectares covered per hour as against .93 hectares/hr for the KKS-4. (Here a 27% gain in productivity earns Mintraktor a 30% increase in price.) The new equipment, it is noted, prevents losses during harvesting that do not figure in the productivity indices. [86] Thus Mintraktor seems to be supplying a little something for nothing. (Indeed, Mintraktor machines have begun to penetrate American markets, although this may be the effect of central agency dumping more than of cost-effective production.) Whether or not capital productivity always improves with new models, it is reasonable to look to the cost of labor in agriculture if one wishes to claim that the Soviets overinvest in agricultural development (or, more accurately, that their investment policy is seriously unbalanced). The idea that labor productivity might be the main problem in agriculture accords with the view that the Soviet incentive structure on kolkhozes and soykhozes needs drastic improvement. But the Ministry of Finance disagrees.

- 67 -

Price disparities, noted one Finance official in 1977, reduce effectiveness of machine deliveries. Sel'khoztekhnika organizations paid wholesale industrial prices (set 1 July '67) for the machines they intended to distribute. They sold the equipment at lower, retail prices (set prior to 1967) to kolkhozes, sovkhozes, agricultural enterprises and organizations. Sel'khoztekhnika received reimbursements from the state budget for the difference between "wholesale" and "retail" prices. (Gosbank grants credits prior to the reimbursement.) This price differential was to disappear as learning effects brought tractor production costs down. The differential increased, however, due to what the official calls goldplating--cosmetic alterations in production models designed to take advantage of the higher wholesale prices the state grants to producers of "new equipment." Between 1969 and 1976, wholesale prices rose 69.7% for mineral fertilizer (also handled by Sel'khoztekhnika) and 89.2% for agricultural equipment. The wholesaleretail deficit rose 251.3% for mineral fertilizers and 114.3% for agricultural equipment. The Ministry of Finance naturally thinks retail prices should rise to match wholesale price increases--naturally, because the consumers would then bear part of the increasing deficit which the Ministry of Finance otherwise shoulders alone. Reimbursements to Sel'khoztekhnika reflecting the deficit between wholesale prices (paid by Sel'khoztekhnika) and retail prices (paid by the kolkhozes and sovhozes) amounted to 4.7% of cost for the DT-20, 9.5% for the NTZ-50M, 21.3% for the DT-54, 30% for the Kolos and Niva grain harvesters, and a staggering 50° for the T-150 tractor (R 10,500 industrial/R 6500 agricultural).

- 68 -

Given all this, one might expect the official simply to insist that consumers pay for tractor improvements. But the official concludes on a slightly different note. He suggests there is no incentive for farmers to become discerning and exacting consumers who make efficient use of their equipment when farmers bear no cost of improvements in the tractor fleet. [87] If retail prices were flexible, on the other hand, farmers would sit up and take notice of the proposed alterations in farm equipment. They are certainly in a better position to evaluate such alterations, and to distinguish between true technological advance and goldplating. Sel'khoztekhnika is in a similar position, but has no incentive to evaluate product changes because it bears no responsibility for its own budget. The financial arrangements for the agricultural machinebuilding sector have the effect of transferring some of the adversary relations naturally occurring between farmers and equipment producers to Mintraktor and the Ministry of Finance. The Ministry of Finance would like to shift them back again to the farmers. The notion of an adversary system helps us understand this development.

The Ministry of Finance has a watchdog role in the economy involving it in adversary relations that may be particularly marked in agriculture. In 1977, the RSFSR Council of Ministers ordered RSFSR Minfin (Finance), Russian Gosbank, and the RSFSR Statistical Administration to strengthen Republic financial discipline. RSFSR Minfin annually audits 1200 agricultural projects, 1000 of which fall under the jurisdiction of the RSFSR Ministry of Agriculture. 11 million rubles in illegal wages accounted for half the violations uncovered in 1977. Spoilage, squandering of stores of produce, and cheating of

- 69 -

kolkhozes and sovkhozes by the organizations supposedly serving them also contributed. Violations occurred in the procurement and installation of agricultural equipment and in the course of watermanagement construction. Minfin criticized the Ministry of Agriculture for issuing a statute awarding bonuses to workers in computer factories under its jurisdiction. [88] In summary, the Ministry of Finance has reason to be concerned with the efficiency of capital consumption in the agricultural machinebuilding sector, having to pay for abuses of capital funds such as goldplating.

Labor

One of the problems in regulating the employment of labor resources in the Soviet Union is the accurate description of those resources. Between 1966 and 1978 agricultural production costs rose 41%. Sovkhoz and kolkhoz wages both rose more than 100° in this period. Labor productivity rose 70° by one estimate. [89] Labor costs, therefore, would seem to figure prominently in the increase in overall cost of agriculture. The mix of workers in agriculture has changed as well. Between 1964 and 1976 the percentage of machine workers in the total agricultural work force rose from 12° to 18°, with an accompanying increase of more than 50° in worker productivity. [90] The source for these statistics implies that the increase in proportion of machine workers has caused the increase in overall labor productivity.

Labor productivity is key partly because planners base capital allocation decisions on it (together with production costs of output). This practice not only ignores changes in the production function, but assumes a meaningful measure of output. The following figures juxtapose labor productivity in agriculture with other indices:

- 70 -

	1966-70	1971-75	1976-80
capital investments	100	166	213.7
fixed production capital	100	173.8	262.2
workers (public sector)	100	96	92
capital/labor	100	181	285
gross output	100	129.3	160.8
labor productivity	100	134.6	174.8
output/capital	100	74.5	65.4

The writer providing these statistics notes that the capital-labor ratio for agriculture has run consistently half the industrial ratio, whereas in the United States agriculture is three times as capital-intensive as industry! Thus he is unworried about continued contraction of the labor pool. Implying that repairs fall under "capital investments", he explains the reduction of the output-capital ratio as an increase in repair services relative to output. The further assumption seems to be that the funds spent on repairs might have been diverted to further tractor production. He assumes further tractor production might have increased output in the short term more than repairs increased short term output, and the output/capital ratio might not have fallen as much as it did in the latter period. But the short-term loss in capital productivity may result in a long-term gain from a better and more cheaply maintained tractor fleet. So far so good. But in conclusion, he prescribes as a condition for capital investment that each percentage increase in the capital-labor ratio must effect a 1 1/2% increase in labor productivity. [91] There is no attempt to trade off the value of further repair services against the value of further tractor production. The entire focus is on replacing labor any way possible.

The contraction of the labor pool does have productivity implications because it partly reflects dissatisfaction on the farms. Typical are the following lines: One of us took courses to operate the K-700; the other received an old tractor. Both of us, it turned out, did not have a real function. The first, having received a license to operate a powerful machine, works as a carpenter or as a trailer operator; the second is constantly repairing his machine. But we have to feed our families and get on our feet, after all. With our present wages this is impossible. [92]

The upshot of the unattractive work conditions on kolkhozes and sovkhozes is a labor shortage on the farms. Industrialization of the sector only exacerbates the problem:

The high degree of mechanical labor inherent in large-scale production operations also limits the possibility of attracting juveniles to work in agriculture. [93]

Pensioners can work only on private plots, particularly if they are unprepared to take on the housing problems agro-industrial complex workers must face. Given these considerations, it is natural to ask why authorities do not encourage small, widely dispersed, marginal farming in backyards. A commentator points out:

The private economy does not divert workers from public production (as is sometimes thought), but rather it makes it possible to employ that manpower which cannot be employed in large-scale agricultural production. [94]

It is surprising not that a private sector in agriculture exists, but rather that the government perpetuates the disadvantages under which it labors.

CLIENT-SUPPLIER INTERACTION

The private sector provides examples of the interactions that characterize client-supplier relations in all of agriculture. Only 1% of the families in Estonia own small garden tractors; fewer own milking units or dung-loaders. One third of the cattle owners have water pumps, 1/2 have watering equipment of any sort. [95] Since most Soviet writers regard Estonia as the most advanced agricultural producer in the Union, shortcomings here are likely to be far worse in Kazakhstan. None of this would matter, of course, if private farming were insignificantly small. But private plots in 1977 accounted for 12% of the overall volume of agricultural production, 27% of all vegetables, 30% of all meat and milk, 37% of all eggs, and 62% of the potato crop. The only widely available mechanical aids these farmers have are pumps, electrical separators, butter churns and straw cutters. The Russian Republic Union of Consumer Societies (Rospotrebsoyuz), the supply agent for private farms in the RSFSR, appears to have difficulty procuring basics such as fertilizer from the chemical industry (Minkhimprom). [96] This ultimately reflects Soviet ideological problems with private farming. But we can regard the supply shortfalls as the immediate result of adversary negotiations between a weak client and perhaps politically maladroit client representative on the one hand, and a supplier with political clout and demonstrated negotiating skills on the other.

The Minsk Oblast Party committee has coordinated an impressive effort to develop a miniature tractor suitable for private plots. The Minsk Machine Tool Plant "Kirov" produces the steering; the Borisovka

- 73 -

plant is responsible for the differential; an enterprise in Vilnius manufactures the gas tank. Needless to say, geographical dispersion hampers development despite the best efforts of the obkom. Interestingly, one writer claims that his plant could solve the entire problem of miniature tractors by designing auxiliary equipment for the NTZ-0.5 provided only Gosplan consider the tractor to be the plant's principal product. [97] This adversary dispute between an enterprise and a branch of the state planning agency was unresolved in 1981.

A highly publicized article in Trud (1977) documented the success of the Czech firm Agrostroy and the Hungarian firm Kompleks in manufacturing small, convenient garden implements, asking why the Soviet Union could not do as well. [98] There was a definite response, and the eleventh five-year-plan pushed production of these items. In 1981 there were 470 plants manufacturing orchard and garden tools and attachments. But these enterprises are distributed among 69 ministries and departments, indicating lack of the concentrated effort and priority that characterize the more centralized, and usually successful, Soviet economic campaign, (such as the gas campaign). If Mintraktor is conducting a "unified technical policy" to meet fully the public's demand for garden implements during the current FYP, so far this has amounted only to the distribution of a catalogue of proposed tools and instructions for production. "But by no means," writes one Mintraktor commentator, "is the head industry always able to compel the enterprise of another department to abide by the prescribed procedure in manufacturing products that are in our list. Cases are not uncommon where 'outside' plants curtail or altogether cease production of orchard and garden tools without consent of Mintraktor and put products into

- 74 -

production as they see fit." [99] Here is a classic case of an adversary relation--this time between production ministries--with no clear rules for deciding a conflict of interests. It is time for one of Jerry Hough's Napoleonic prefects to step in and decide the matter.

Production of garden implements would be useless without a cooperative distribution network. In this, Mintraktor adopts an adversary role vis-a-vis the Ministry of Trade:

It is not uncommon for a plant to increase the output of a certain type of product for which the demand is far from being satisfied. But the wholesale depot with which the plant has a contract opposes a further growth of production. The Lidsel'mash Plant in Grodnenskaya Oblast planned in 1981 to increase the output of hoes to 90,000, while the request from the trade sector was only 25,000; that is, that was the number of hoes the market needed according to the wholesale sector. The production association Voronezhzernomash found it possible to increase the production of orchard augers, but once again trade organizations have not been supporting this initiative, though according to figures of the USSR Ministry of Trade, the need for these goods is far from satisfied. [100]

Such accounts do not analyze the motivation of trade organs to impede distribution of a good, although we may surmise the goods are not in the trade organ's plan. This would support the model of decisionmaking from a mesh of conflicting, unarbitrated interest groups.

Roskhozkooptorg (Russian Republic Agricultural Trade Cooperative) is trying to create a series of local stores specifically for the distribution of shovels, milking units, plows, fertilizer, toxic chemicals and building repair materials. (This organization may be subordinate to Roskhozpotrebsoyuz.) There exist 12,000 "household goods" stores, 58,000 stores "for goods in daily demand," 500 warehouse stores and 100 house and garden stores. Smolensk Oblast has been particularly successful because of its oblast consumer union. Individual trade organizations, however, will push expensive goods in order to fulfill sales plans. (Does this explain the troubles Lidsel'mash encountered with its trade contractor?) For this reason, Roskhozpotrebsoyuz proposes that rayon consumer unions should distribute garden tools at produce procurement points, bypassing the Ministry of Trade. [101] Consumer marketing seems to baffle the Soviet system. The adversary relation between the Ministry of Trade and the consumer unions may have some beneficial effects, but the present lack of adjudication between distribution interests and consumer interests produces only confusion and inaction.

Repair work provides another field for the development of adversary relations in agriculture. Malfunctions seem to plague Soviet tractors. In Belorussia, Sel'khoztekhnika operates repair enterprises, technical servicing points on kolkhozes and sovkhozes, and repair stations and repair shops. The Belorussian Communist Party blamed Belorussia's 30% inoperative vehicle rate on "large misreckonings" of Sel'khoztekhnika. Gosplan, the Ministry of Agriculture, and Sel'khoztekhnika were held jointly responsible for the inadequacy of repair facilities, which averaged a 26% defective repair rate in 1977. [102] This raises the important question of whether Sel'khoztekhnika actually encourages the diffusion of Soviet agricultural technology, or merely multiplies the number of adversary roles bedeviling the sector.

Another example of adversary roles involves the conflict of interest between sovkhozes and kolkhozes, on the one hand, and enterprises responsible for providing trucking and transportation services, on the other. This area has the beginnings of a decision system, however; but the details have yet to be worked out. A motor vehicle establishment charges farms 3.5 to 10 kopecks for each idle minute on 4-ton and larger trucks. Farms charge motor vehicle establishments 2.5 kopecks for each minute late a vehicle arrives for work. If the truck is more than 30 minutes late, the establishment pays R 1.50. Fines in FYP IX (1971-75) amounted to 40.3 million rubles. [103] The Soviets are actively seeking an alternative to trucking: TASS reports that container pipes can replace 60,000 drivers and 20,000 10-ton trucks yearly. [104]

Several cases involving grain elevators illustrate the importance of clients occasionally acting as advocates to get things done for a supplier. These large structures store and occasionally process grain between harvest and eventual consumption. Without adequate storage facilities, a harvest is wasted. FYP X called for a doubling of the FYP IX elevator base. The Party blamed lags in 1976 on the contracting organizations for the USSR Ministry of Construction and the USSR Ministry of Industrial Construction. [105] Other sources criticize the USSR Ministry of Rural Construction for dilatory incorporation of new technology. Lags of up to eight years have delayed the introduction of ring-shaped silos, prefabricated monolithic foundations, and metal silos. [106] Orenburg province, with its large volume of grain production, needs vest elevator capacity. Grain is piling up, often completely exposed, at places like Novosergiyevka. The deputy director for construction at Novosergiyevka and a foreman at the Orenburg Elevator Construction Trust cite a shortage of labor (96 rather than 250 workers) as the principal problem. A meeting attended by the chief of the Main Administration for Elevator Construction in the RSFSR Ministry of Rural Construction, the director of the Orenburg Elevator Trust, and

- 77 -

a "representative of the client" resolved the labor shortage. The resolution does not seem to have required Party intervention, but it also does not seem to have been routine procedure. [107]

Equipment, rather than labor, shortages have plagued the elevator combine at Ussuriysk, Primor'ye province in the Far East. The elevator handles 18,000 tons of mixed feed every month for the entire southeast part of the Soviet Far East. The Ussuriysk elevator is the only one in the area. Yet is has lacked 56 unloading sections for the main grain conveyors, 4 chain conveyors, actuating boxes and cables. The RSFSR Ministry of Procurement supposedly placed priority orders. When the equipment did not arrive, the combine director traveled to the Odessa Prodmash Plant, which was simply slow in delivering its conveyors, and to the Khar'kov Spetselevator plant, which had never even received the orders and had no indication that Ussuriysk was a priority project (implying such information would have made a difference to production decisions taken at Khar'kov). The commentator writes:

It would be unfair to accuse the Primorskiy Kray Grain Product Administration (the client) of total indifference to the situation in Ussuriysk. It is perfectly apparent, however, that had the clients demonstrated greater foresight and persistence the "joining" of plans of the builders and those of the suppliers would have been more dependable. This is the cost of a lack of coordination in planning even though the builders are enthusiastic. [108]

This variation on the theme of adversary supplier-client relations suggests that the supplier occasionally looks to the client for support in procuring equipment for capital construction. In another case, the Tselinograd Elevatormel'stroy Trust asked to abandon plans to produce elevators of a new design involving mobile molds of monolithic concrete that do not admit moisture as readily as older models--the producer is not always enthusiastic. [109] Explaining overall difficulties in the elevator campaign, A. Maslov writes:

Neither the USSR Ministry of Procurement as the customer nor the USSR Ministry of Rural Construction as the main contractor were prepared...for implementation of a rapidly growing program. [110]

The implication of Maslov's lament is that things might have turned out for the better in the grain elevator sector if at least one interest group had supported expanded production. But with an indifferent client, and an occasionally balking producer, it seems there has been no natural mechanism to push the technologies involved. The Ministry of Agricultural Construction, in partial recognition of the lack of interest group advocacy of the program, assigns staff to each elevator that make monthly visits, reporting to a ministerial board including representatives of the client. Furthermore, there exists an all-union staff headed by a deputy minister for agricultural construction (G. Denisov) and a deputy minister for procurement (K. Kuznetsov), and attended by managers of construction trusts, deputy chiefs of oblast administrations for grain products, and central services of the contractor and customer. "...if a shortage...is experienced...then specific measures are adopted on the spot jointly with the customer to eliminate the difficulties," writes a commentator. [111]

The creation of a central panel to adjudicate industrial disputes is a logical response to the problems in Soviet nondefense industry. But there is a trade-off between high placement of such an adjudicative panel enabling it to implement decisions, and the dispersion of authority necessary to manage all aspects of the diverse operations of the elevator construction trusts. A standard decision procedure would harness the information available from the working of the adversary system in Soviet nondefense industry in such a way as to avoid this trade-off: decisionmaking could be both efficacious (the interest groups, or adversaries, would see to that), and sufficiently articulated to meet diverse needs (since the decisionmaking participants would all be local players).

A final agricultural support sector that gives rise to interesting industrial disputes, and also to a demand for foreign production processes, is chemical fertilizer. A July 1978 Central Committee Plenum decree concentrated agrochemical services into the center and branch administrations of the agricultural machinery repair and maintenance network. The agrochemical production base had since 1972 consisted of centers at farms coordinated by interfarm centers. There were, for example, 305 centers at Ukrainian farms, and 198 interfarm regional associations, in addition to 210 "special sections" attached to Sel'khoztekhnika. We know a little about the development of some of these cooperatives. A former chief of a rayon Party directorate for agriculture (now first secretary of another raykom) formed the first cooperative center financed entirely by shareholder kolkhozes: established in 1975, it services 17 farms with three agrochemical centers, labs, an information center for epidemiological tracking, a supply service, storage space for fertilizer and pesticides, and mechanized equipment for the maintenance of pastures. A kolkhoz council directs the center, assisted sometimes by Sel'khoztekhnika. The agrochemical center determines fertilizer demand, prepares orders, and controls storage and distribution. It also limes and sprays the fields.

- 80 -

Large farms have their own centers; otherwise interfarm associations with jurisdiction over 20,000 hectares (10-12 km radius) with three to four local centers each, seem appropriate. [112] An official in the Ministry of Agriculture with responsibility for the use of chemical processes notes that shareholder ownership of the agrochemical associations "makes it possible to control the economic interrelationships, the price level for services and the distribution of profits." [113] He might have written that this arrangement prevents a set of adversary relationships from developing between the equipment procurement centers and the farms, as has happened in some instances with Sel'khoztekhnika.

The supply of fertilizer, nevertheless, has serious problems. A Gosplan official claimed in 1978 that 20%-40% of all fertilizer deliveries were unsatisfactory. .Shortfalls centered on moisture content, acidity, caking, lack of potency, low granule strength and unsuitability for bulk transport. [114] Another problem has been beyond the control of ministries alone: The nonchernozem (non-black-earth) zone of the Soviet Union is poor in phosphates but rich in phosphorites. Phosphorites fertilize only when limed. The decision to develop nonchernozem farming, together with a history of difficulties with phosphate production that have persisted despite Western technological assistance since the 1930's, have caused Soviet foreign trade organizations to import a large quantity of super-phosphate fertilizers from the Occidental Chemical Group. These large imports have not created a dependency on Occidental since the Soviet Union always entertains the expensive option of a campaign to lime nonchernozem soil extensively. The decision to import chemical fertilizer comes close to

- 81 -

purely technological considerations. But the root of the problem may be organizational. There does not seem to be any institution in whose explicit interest it is to push the chemization of Soviet agriculture. Chemical fertilizers may have lacked an advocate.

The Central Committee of the CPSU called for the establishment of an all-union agrochemical association, Soyuzsel'khozkhimiya, within the Ministry of Agriculture. Following existing divisions of the Ministry of Agriculture and Sel'khoztekhnika, the agrochemical association is to include scientific-production associations in union republics, production associations in autonomous republics, krays, oblasts and rayons, chemization points in enterprises, agrochemical labs, NIIs and stations for produce protection. Soyuzsel'khozkhimiya will prepare proposals, draft plans, determine domand for mineral fertilizer, devise means of plant pro:ection, lime the soil, provide feed supplements, order resources from Gosplan and Gossnab, deliver agrochemical goods, extract limestone and gypsum, oversee the improvement of land fertility, organize storage, conduct research, run pesticide campaigns, and train personnel. [115] It is tempting to speculate that the need for Soyuzsel'khozkhimiya arises from the fundamental need for interest groups in the Soviet context in the first place. Interest groups provide the impetus to get things done. As the list of things that need to get done increases in complexity, conflicts arise, at which point the system that provides so well for the articulation of diverse interests (i.e., the adversary system) cries out for decision procedures to resolve conflicts. But this does not mean the adversary relations are harmful in themselves. One could almost say the more adversary relations, the better the system is able to articulate needs--provided

- 82 -

conflicts can expect resolution. With the establishment of Soyuzsel'khozkhimiya, at any rate, the government institutionalizes an advocate of chemization.

CONFLICT RESOLUTION

Industrial conflict resolution takes many forms in the Soviet Union, some of which doubtless go unreported in the press. Nevertheless, it is possible to get an impression of both the variety and the apparent spontaneity of Soviet industrial conflict resolution through published case material. *Sovetskaya Rossiya*, for example, criticized Mintraktor for poor organization in servicing the Niva and Kolos combines. A deputy minister for Mintraktor acknowledged publicly that the criticism was justified and corrective action was taken. Dismantled combines delivered to the Altay similarly attracted *Sovetskaya Rossiya* attention, with the result that the Krasnoyarsk Production Association for Grain Combines held open plant meetings in conjunction with the Association's party-economic aktiv, finally dismissing the responsible deputy chiefs. [116]

Other industrial organizations may serve as the forum for conflict resolution. Thus the former chairman of Sel'khoztekhnika (now Minister of Mintraktor), A. A. Yezhevskiy, chaired a meeting including officials from the Central Committee, the Council of Ministers, Gossnab and the People's Control Committee, to discuss failures of various Mintraktor and Minzhivmash enterprises to provide timely deliveries of crankshafts, bearings, gears, pistons and piston rings, cylinder sleeves, plowshares, clutches, cutters, cutter-loaders, transporters for manure collection, and steam-generating boilers. [117] The chief of the Party apparatus' Agricultural Machinebuilding Department, I. I. Sakhnyuk, chaired another

- 83 -

conference including senior officials of the Central Committee, Council of Ministers, Gosplan, Gossnab, Gostekhnika, ministries and branches, to discuss technical faults which Sel'khoztekhnika had discovered but Mintraktor had never corrected. [118]

As mentioned in the Introduction, Jerry Hough and Skilling and Griffiths are excellent sources on Party intervention in economic affairs. Hough's analogy of local Party officials to prefects explains the inability of Communist Party officials fully to delegate the task of industrial coordination to the ministerial structure. Romanov (Politburo member), for example, participated in a Smolnyy Party aktiv to organize the local Party, Soviet, trade union and komsomol (youth) organizations to improve Leningrad's fodder base. [119] In Belorussia, the first secretary Masherov discussed topics as varied as: the shortage of machine workers (148 per 100 tractors), the poor retention rate of Bolorussian-trained machine operators (36,600 of 165,000 trained) due to inadequate housing, the inappropriateness of various tractor productivity indices, shortages of attachments for the new NTZ tractor, and even a proposal to mow grain and subsequently thresh the fallen windrows rather than to head and thresh standing grain in one step. [120] In Estonia, a reporter documents the efforts of a newly appointed Sel'khoztekhnika rayon association leader--a "young and energetic communist"--to prosecute land reclamation plans with the assistance of a member of the local Party bureau. The Party cell in the association (100 communists), as in other enterprises in other sectors, trains cadres, manages socialist competition, and strengthens discipline, receiving orders from central committee plenums. [121] It almost seems that agriculture has come to rely on its administrative prefects to operate.

- 84 -

In 1965 the Central Committee of the Communist Party adopted a plenum resolution abandoning Khrushchev's willful and "subjective" approach to agricultural planning, and substituting a more orderly, bureaucratic process. The plenum resolution criticizes the "endless stereotyped instructions on agrotechnical subjects...without local conditions being taken into consideration" which collective farms (kolkhozes) and state farms (sovkhozes) received from above. [122] "This has hampered the initiative of managers and experts, of all toilers of the countryside, and has interfered with the normal conduct of affairs," it continues. Despite this reduction in interference from above, however, Party administrative functions require strengthening:

Particular attention must be paid to the improvement and enhancement of the role of primary party organizations in the collective and state farms. Party raykoms must, in their daily work, rely on them and help them in the mastering of their organizational, political, and educational work among the masses. [123]

This is an instance of Zaleski's generalization that the Soviet Union is turning from central planning to central management: Party raykoms are to step up their administrative activities without interfering in local initiative and planning.

The clearest pattern that emerges in agricultural technology is the operation of an adversary system that often pits suppliers and clients against one another, but at least serves to translate needs into institutional action and advocacy of such services as repair, grain elevator production and chemization. The pattern of institutional advocacy of economic objectives in itself does not differentiate the Soviet adversary system from bureaucracy. The difference here is that

the advocacy and adversary system that serves quite well to articulate user interests in the agricultural sector seems to lack the fixed decision rules that resolve conflicts in bureaucracies, interest group coalitions (such as Congress and Parliament), and classical markets. One result is a confusion that would persist in the face of any reforms that did not explicitly address decisionmaking processes. Another result is a vehicle for client bargaining prowess that enables some to take advantage of the informal forums of arbitration. Sel'khoztekhnika seems to function as a quality controller for the farms, a distributor or marketer for the producers, and a shield to protect the kolkhozes and sovkhozes from adversary disputes with the industrial sectors that service them. Unfortunately, nothing in Sel'khoztekhnika's constitution impels it to be a financially responsible arbiter, leaving financial conflicts of interest to create adversary relations between the Ministry of Finance and Mintraktor. Mintraktor, on the other hand, seems to play the role of the man in white in its dealings with the Ministry of Trade (an unforgivable entity). The cases of both grain elevators and chemical fertilizer illustrate the Soviet system's need for institutional advocates of economic objectives, returning us to a plausible explanation for the creation of Sel'khoztekhnika: the farmers simply could not be expected to function competently as advocates in their own behalf in the Soviet adversary system. It is difficult to evaluate Sel'khoztekhnika because it is hard to imagine what the sector would be like today without it. Arguably, Sel'khoztekhnika just multiplies without benefit the adversary relations prevailing without governance in the agricultural sector. And arguably, Sel'khoztekhnika does not competently represent the interests of the farmers, as

- 86 -

virtually all the desirable foreign tractors are going into sectors other than agriculture. But the farmers may not care: they do not pay for the tractors on the majority of farms. The case of the uncaring client is not all that different from the case of the technologically incompetent client: in both, the nondefense economy misses the opportunity for the player with the most knowledge of a product -- the client -- to have an impact on industrial outcomes.

.

IV. CHEMICAL EQUIPMENT CONSTRUCTION

The chemical/petrochemical equipment sector in the Soviet Union may be evolving into less of a producer and more of a service organization that assembles and supports foreign componentry and plant. Such an evolution is in line with what we would expect as the result of a high degree of risk-aversion among chemical equipment clients regarding equipment supply. Their risk-aversion follows from the lack of substitutes (especially in compressor turbine technology); the strong pressure from the center on energy sectors to perform; the high sensitivity of oil and gas ministries to equipment performance; and the Soviet mastery of applications engineering in the field. Unfortunately, the evidence available to this writer is fragmentary and will not support firm conclusions, but it nevertheless suggests an interesting dimension to Soviet low-level industrial decisionmaking. If the scattered indications are reliable, we may, in this sector, be witnessing consistently high reliance of the center on foreign technology as a function of the information provided by a client unable to tolerate shortfalls in equipment supply.

Extensive importing of chemical and petrochemical machinery has characterized this sector since the time of Khrushchev's chemization (or chemicalization) drive in the early 1960s. The present chapter explores the extent to which industrial interests arising within the adversary system postulated above may have influenced Soviet import policy in this area. A brief examination of interactions between the Ministry of Chemical and Petrochemical Machinebuilding (Minkhimneftemash) and the

- 88 -

central planning apparatus (i.e., Gosplan, the Council of Ministers and the Party Central Committee departments), together with some examples of foreign trade agreements, introduces the research hypothesis that Minkhimneftemash industrial advocacy has partially determined trade outcomes in the chemical machinebuilding sector. (A case study by Philip Hanson supports the contention.) The chapter then considers ministry management of other inputs, especially R&D, and outputs, especially product diffusion, in light of the research hypothesis. It seems that Minkhimneftemash advocacy of a hardpressed client (a variation consistent with the adversary model) may have produced overinvestment in foreign technology. The evidence does not permit the conclusion, however, that advocacy within the adversary system dominates low-level Soviet industrial decisionmaking in this sector to the exclusion of the interests of central planners. The picture of Soviet economic decisionmaking that emerges is complex, but nevertheless permits the exploitation of readily available information about Soviet industrial structure to improve predictions of Soviet foreign technology demand.

INDUSTRY STRUCTURE

A 1978 CIA paper on Soviet chemical equipment purchases from the West argues: "Large, unsatisfied requirements of industry, agriculture, and the consumer appear to underlie the bulk of Soviet chemical equipment orders." [124] These orders have included equipment for the production of multinutrient fertilizers, polyethylene, polyester fiber and ammonia. The purpose of the large-scale importation of chemical equipment does not seem to be solely to develop domestic capability to produce machinery. The principal benefit, according to the report,

- 89 -

seems to be rather the superior efficiency characteristics and the shorter lead-times of Western-equipped plants (4 years vs 8 years). [125] In short, the perception of unfulfilled domestic needs and the inadequacy of home-grown technology drives Soviet decisions to import technology. But it remains unclear how the decisionmaking system articulates those needs and inadequacies (particularly without a price structure) and why it responds to them with the short-term solution of technology infusion from abroad.

The chemical and petrochemical branches of Soviet industry employ nearly 5% of the total industrial labor force. [126] The industry has retained a high priority for technology imports since 1960. [127] Western machinery has accounted for nearly 1/4 of total machinery investment in the chemical sector since the late 1960s. This is much higher than for any other documented industrial branch. [128] Western chemical technology, according to Hanson, feeds primarily into householdconsumption end-uses. [129] Hanson agrees with the CIA conclusion that any efforts to replicate foreign technology have been "rather unsuccessful." [130]

Industrial Advocacy

In 1973 the Central Committee criticized Minkhimneftemash on the following grounds, providing a detailed example of Party-industrial interaction. The structure of production management was too elaborate and its staff too large. The staff/employee and expenditure/employee ratios were too large compared with other machinebuilding ministries. The consolidation of enterprises and the conversion to a "shopless" factory structure was proceeding too slowly. Research and production associations suffered from poor organization; questions about centralization of auxiliary services, shops and sections remained unresolved. The practices of the most efficient enterprises received insufficient attention. No action followed the "disclosures" of the People's Control Committee in 1969 of overexpenditures in the maintenance of the management apparatus--6.5 million rubles (peanuts)--including business trips, conferences, and frequent summons of officials to ministry headquarters. The criticism singled out a deputy minister, the labor chief, and the accounting chief for leniency in handling violations of state financial guidance. [131]

Very importantly, the client, whom we might by now expect to be even harder on the ministry, has voiced relatively few objections to Minkhimneftemash performance. In a summary speech in 1975, Fedorov, the Minister of Petroleum Refining and the Petrochemical Industry (Minneftekhimprom), criticized lags in oil processing development, lags in the use of additives, the short supply of radial tires his ministry produces, the slowness of technical reequipping of the rubber industry and the ministry's small share of quality mark products. [132] Nowhere a bad word for Minkhimneftemash! The Central Committee had previously praised Minneftekhimprom efforts to raise capital investment effectiveness despite the fact that it criticized construction progress. [120] It is possible that in this sector, client and supplier exploit the adversary system through cooperation.

Minkhimneftemash has a diverse charter. The ministry is responsible for supplying refineries to Minneftekhimprom, processing equipment to the pulp and paper industry, microbiological gear to Sel'khoztekhnika, and blast furnaces for oxygen plants. FYP X (1976-80) demanded 10%-12% production gains. The ministry has produced steam

- 91 -

generators capable of steel production and driving oil from wells. Central plans have required it to supply complex automated oil and gas processing systems, gas condensate and new fertilizer plants to supplement those imported from the U.S., Japan and Italy. The ministry is responsible for production of compressors, gas processors, pipeline, drilling rigs, bits, and oil and gas field tools. There is large-scale cooperation between Czechoslovakia, the GDR, and Minkhimneftemash. But this is clearly not enough: the ministry remains overburdened. One commentator writes:

But because the priorities set for the Chemical and Petrochemical Machinebuilding Ministry's customers' ministries are so high, Mashinoimport, Tekhmashimport and other Soviet Foreign Trade organizations will need to continue to place large equipment orders in Europe, America and Japan during the next five years. [134]

If Minpribor regards foreign technology import as competition, Minkhimneftemash looks at it as relief.

Organization

Examples of technology import are well documented in the Soviet press. With great regularity, the projects are of high visibility and involve CEO sign-off from the US participant. [135] Perhaps the bestknown agreement is the protocol signed by Armand Hammer and Gostekhnika in 1972. It provides for: petroleum and gas exploration and processing; agricultural fertilizer sales; metal treating and plating; hotel design; and solid waste utilization. Sample and personnel exchanges, symposia, mutual consultations, joint R&D and program implementation, assistance in locating specialists and organizations working on specific problems in both countries, and license acquisition will implement the agreement. Hammer enjoys contacts with the Petroleum Industry, Minneftekhimprom, the Gas Industry, the Chemical Industry, Metal Machine-tooling, and agencies of the Moscow City Soviet in hotel design and waste utilization. [136] (Curiously, the Soviets have always insisted on signing with chief executive officers, not appreciating that their time is a firm's most expensive resource. [137])

Hanson offers some highly interesting comments which support the research hypothesis of the present chapter. He refers to "the (apparently unique) adoption of a general contractor role in supply coordination and the installation of machinery by the Ministry of Chemical and Petrochemical Machine-Building." [138] It is Khrushchev's tactic of massive technology import that set the precedent "for domestic R&D to focus on complementary activities, and for domestic chemical engineering to dodge certain tricky new design and manufacturing responsibilities." [139] It also created lines of communication between the chemical ministry and Western contractors, and between the ministry and the Soviet foreign trade organization responsible for chemical equipment imports, Tekhmash. He continues:

The power of branch ministries to influence their own plans and the momentum of established policies and practices in the Soviet economy may well have enabled the chemical and petrochemical ministries to perpetuate the large-scale buyingin of Western technology as an easy solution to their own problems, in the face of any intention of the central authorities to reduce this activity in the long run. [140]

During visits to the U.S., the Minister of the Chemical Industry, Kostandov,

has referred to possible purchases in terms suggesting that, within a certain (usually very large) hard-currency allocation, he can make his own decisions about choices of technology and supplier, and that he can, for example, override Soviet State Standards requirements and nonchemical industry influences on locational decisions in the interests of speedy acquisition of a capability. [141]

Even R&D outfits in the chemical industry are streamlined to complement foreign technology import. [142]

It begins to appear, in the framework of the present essay, that the Soviet supplier of chemical equipment (Minkhimneftemash), and the clients in the sector (Mingazprom, Minkhimprom, Minneftekhimprom), cooperate in presenting Gosplan planners with the apparent necessity of importing technology. Supplier-client cooperation does not figure greatly in the Soviet computer sector or agriculture, but the common element in all three cases is that the adversary system operates to the disadvantage of the state. In the present case, the ultimate client and the equipment supplier join up to create adversary relations with the central agency responsible for importing. The equipment supplier becomes in part a maintenance and assembly organization, shifting technological and design problems to the government, and eventually overseas.

FYP X subjected all petrochemical enterprises to full financial accountability for five years, forcing them to pay for investments out of profits. [143] Moreover, associations within the sector compete from time to time. Thus the Association of the Petroleum Industry for the Tatar ASSR and the oil and gas association of Tyumen have competed under an agreement posting a shared total oil quota. [144] Such pressure, in the Soviet context, does not necessarily make the affected enterprises leaner; but it definitely encourages innovation in evading responsibility and difficult industrial tasks.

- 94 -

The hypothesis that there is a degree of cooperation in the chemical equipment sector should not suggest complete harmony. Before turning to R&D management it is worth considering the state of construction at one of the sector's largest and supposedly highestpriority projects. Indeed, the Tomsk Petrochemical Plant was supposed to begin polypropylene production at 150°, of the 1980 national level in the USSR. Khimstroi is the chief contractor, and tried therefore to blame the designers (standard practice) for schedule delays in construction. The responsible installation organization failed to meet all its early quotas for machine installation even though Gossnab had ensured that all materials were present. The governing construction ministry tried to delay the polypropylene commission. This effort appears to have failed. The Ministry of Power and Electrification planned only 1/2 the necessary power. The client, Minkhimprom, has not gotten all the equipment in place: pollution control facilities were ready but sewage disposal facilities were not. The Tomsk Territorial Administration has interfered with the Ministry of Construction's housing plans for the new chemical workers' collective. [145] And yet this is unquestionably a priority project. It would appear that priority alone is not sufficient to overcome inertia caused by the adversary conflicts that proliferate in complex projects.

Research and development

The appearance in the Soviet chemical equipment sector of coordination in the research effort would indicate the absence of divergent industrial interest groups and would thus refute one of the principles of the adversary model under examination in this essay.

- 95 -

Similarly, the systematic resolution of trade-offs between research priorities would illustrate a functioning set of decision rules or procedures and thus falsify the second tenet of the adversary model. In both cases, the evidence that would rule out the model is lacking. There are, on the other hand, several comments that corroborate the adversary model, at least indirectly. A report from Sandia Labs, for example, states:

The Russian drilling research appeared to consist of incremental improvements and solutions to specific problems encountered in the field. They appear to have abandoned nearly all research on new methods/systems. [146]

The dispersion of effort into ad hoc research projects reacting to specific technical difficulties suggests both a lack of consensus on research priorities (hence divergent interests) and a lack of procedures to decide major trade-offs implicit in the constraints on any research agenda (hence no arbitral rules). The Sandia comment is consistent with Hanson's characterization of Minkhimneftemash as often operating in the role of a general contractor offering support services in the introduction of foreign technology. The cases that follow support the general thrust of the Sandia remark.

Minkhimneftemash now organizes R&D institutes by type of machinebuilding and type of enterprise served rather than by production function, thus further suggesting its development as a service organization (contractor rather than producer). There is a thoughtprovoking similarity in trends toward expanded service sectors in both the U.S. and the Soviet Union. The ministry, furthermore, assigns its enterprises and institutes only main-indicator quotas, considerably freeing up decisionmaking on the plant floor. The ministerial collegium nevertheless conducts on-site review of NII work and sessions to hear research directors and specialists. Minkhimneftemash has specifically earmarked 8% of its capital investment funds for lab construction, experimental shops, research institute pilot facilities and design bureaus. Every branch of the ministry enjoys its own experimental plant. [147]

Other ministries in the sector conduct their research with less applications engineering orientation: not as many experimental facilities, and with a greater reliance on academic credentials and state funds. The All-Union Research Institute of the Ministry of the Petroleum Industry (i.e., of Minnefteprom, not Minneftekhimprom) has a staff of 582 engineers, of which 19 have second level doctorates and 105 have candidate degrees. (The Soviet kandidat degree is, roughly speaking, between an American Masters and PhD degree.) This institute, however, can claim only 56 inventions over the past five years, or one for every 50 man-years! Of these, only 14 were practically applicable, and only one was "profitable." Pravda blames this inefficiency on the separation of plans for true inventions and so-called "new technology" which is merely cosmetic. The separation of plans supposedly impedes effective use of the "new technology" funds. [148] Pravda seems to be accusing Minnefteprom of goldplating. The Academy and the Party, at any rate, have pushed strongly for more experimental facilities.

The emphasis on applications engineering in the Ministry of the Gas Industry appears to be weaker than in its equipment supplier's organization. Of course, it is difficult to get a feeling for the ratio of basic research to development in Soviet industries beyond crude measures. The overall ratio of expenditures on industrial research to

- 97 -

those on experimental design work is 1/4.8. Mintraktor has one of the lowest ratios, 1/5, indicating an emphasis on engineering. The ratio for the Ministry of the Gas Industry, on the other hand, is 1/2.1. [149] What little product development and innovation that does get accomplished intertwines with academic research. [150] Pure science seems to offer a better career path in the Soviet Union than applications engineering. Interestingly, it is to the Institute of Chemical Physics of the Academy of Sciences of the USSR (the Soviet chemical engineer's academic nirvana) that industry must turn for process development. In 1976, 91 of their 116 projects centered on chemical and metallurgical process technologies, the remainder being distributed among transportation, agriculture, health service and instrument building. [151] The broad picture, at any rate, is of an idustrial sector in which the equipment supplier emphasizes applications engineering for the client.

The Ministry of the Petrochemical Industry has established an allunion research and production corporation to improve its innovation record. The Neftekhim Corporation has a council of directors and a scientific and technical council comprised of the industry's main institute directors, representatives of corporate management and workers. The councils review construction projects, industrial development plans and technical projects. Each institute of the corporation plans for plants and complexes in its vicinity. The VNIPINeft institute of Moscow and the corporation's special design bureau succeeded in rapidly implementing an automated shop for polymerization of polypropylene at the Moscow Petroleum Refinery, for example. One commentator argues that the subordination of Neftekhim to

- 98 -

an administration of the Ministry of Petroleum Refining conflicts with the multi-branch nature of its work and thus reduces its effectiveness. [152] The Academy occasionally serves as the extra-ministerial organizer of such complex research efforts. The Western Center of the Ukrainian Academy, for example, organized a major research program in underground drilling machine design involving the L'vov Polytechnic, the I. Franks Institute of Petroleum and Gas, the Ukrainian Scientific Research Institute for Geological Prospecting, the L'vovneftegazrazvedka Complex, and the Drogobychi Drill Plant. [153] (This is not sufficient to remove the need for foreign imports. Sudoimport is purchasing \$40 million of semisubmersible drilling machinery from Armco, supplied with blowout preventers, air compressors, air winches and a fresh water maker from Steard and Stevenson Oil Tools, Inc., and possibly subsea wellhead equipment and motion compensators from Vetco in Ventura.) [154]

The case of vacuum equipment seems to prove that industrial branches can out-manoeuvre the center on technological issues. As of 1977 there was only custom production of items such as electrical discharge pumps in dispersed ministries. Vacuum equipment was an "unwanted child." Minkhimneftemash announced its refusal to undertake production of pumping equipment formally in a conference. The Ministry of Cemmunications Equipment cut back on its vacuum measuring technology R&D. Clearly, vacuum equipment has lacked an advocate in a decisionmaking system that seems to require some group sponsorship for anything to be accomplished. *Prarda* suggested that Gostekhnika should study the problem to determine whether the Academy of Sciences could organize a council on vacuum physics. [155] In other words, Gostekhnika and the Academy were to initiate and arbitrate. Once vacuum equipment

- 99 -

gains an industrial advocate, a set of adversary relations between it and the branch-user ministries will presumably spring up, leaving the question of appropriate production levels open to arbitration.

CLIENT-SUPPLIER INTERACTION AND CONFLICT RESOLUTION

On the side of Minkhimmeftemash outputs, as noted above, one finds very subdued adversary relations between the producer and the client ministries. It may be in the interest of the Party to alter that situation. The historical pattern, however, has been to attempt to reform the client by taking action on the client or the supplier. One commentator complains of the lack of information on the needs of the chemical, petrochemical and oil refining industry. Do they need centrifugal machines operating at 1000-25000 atmospheres? Or do they need piston machines operating at 4000-10,000 atmospheres? Is it necessary to upgrade a 7-8 atmosphere compressor to 10-12 atmospheres if developers are creating a "vibrationproof pneumatic tool?" The commentator contrasts this state of affairs with the clarity of oil and gas extraction demands. [156] The implication is that clearer technical requests have improved outcomes in the extraction sector.

Minkhimneftemash has experimented with wholesale trade to improve product distribution. [157] The experiment may not have worked, because factory outlets never spread into the chemical industry despite the widely publicized success of Minpribor instrument boutiques. Another reform-oriented effort was the shift of Minkhimneftemash enterprises to production and distribution of complete sets of equipment. The ministry also reorganized its research institutes and enterprises according to the product type of the client served. [158] Some organizations never win. Gostekhnika has since criticized the
All-Union Scientific Research and Project Design Institute for Complete Technological Lines for lack of organization, staff, and engineering facilities, and on account of late equipment deliveries that are often disassembled or otherwise nonfunctional. [159] But the Central Committee has clearly endorsed this general effort to impreve technology diffusion in the chemical and petrochemical sector. [160] As previous paragraphs have suggested, however, Minkhimneftemash accommodation of its petrochemical and chemical industry clients does not seem to have been the sector's big problem. Indeed, this branch seems unique because of its excessive concern with facilitating technology introduction (what Hanson calls general contractor services) and its lack of concern in pushing its own production lines. Given the availability of foreign technology, this arrangement seems to suit client and supplier quite well.

Robert Campbell's work on the efficiency of gas transport provides a final case on client-supplier interactions. [161] Compressor power per volume of line, he notes, is now greater in the Soviet Union than in the U.S. Throughput remains lower, however. He dismisses pressure as an explanation and suggests instead that pipe repairs, fouled lines due to inadequate gas preparation, compressor problems, inadequate storage or buffering at the delivery end, and inefficiency in compression per unit of capacity account for gas transport shortfalls. [162] Imported pipe, as a consequence, has accounted for as much as 58% (1961-75) of the new pipe investment. [163] It is not that the Soviets cannot produce sufficiently thick pipe, it is rather the low yield strength, wall thickness and workmanship of Soviet pipe that prevents their use on lines under more than 55 atmospheres of pressure. [164]

The Soviets are also after gas-turbine-powered compressors. By 1975 they had deployed 10 MW compressors to cover 1/4 of their total capacity, but are still developing 16 MW and 25 MW models. [165] The attempt to develop aircraft engines for compressor use failed to realize capacity improvements. [166] In addition to the failure to meet production targets for compressors, the compressors produced have proven unreliable: they experience an average breakdown cycle of 1970 hours, compared with 25,000 - 40,000 hours for American units. [167] Campbell notes that the Soviets use 158 GE compressors on the Orenburg line. [168] He estimates that there is no gain of resources (?) from importing, but rather higher quality and better life-cycle parameters. [169] There is also a gain from speeding up gas production: "The gain from accelerating availability in one year alone is enough to pay for the whole compressor import program." He arrives at this startling conclusion assuming a one year lag in domestic deliveries compared with foreign deliveries--an assumption we have seen to be conservative. [170]

Campbell finds that planning articles tend not to view Soviet R&D and foreign technology inputs as competing input resources capable of intersubstitution. [171] Hanson's point that the chemical equipment sector has evolved in part as a comfortable support service for foreign plant is consistent with this. Nevertheless, the Nevskii Plant, the Leningrad Metal Plant, and the Ural Turbomotor Plant are all working on compressors. The failure in domestic innovation seems to occur not at the research but the production stage, at which point imports become an attractive stopgap. [172]

The adversary system is not operating in the Soviet compressor campaign in an obvious manner--all good rules have exceptions. But its vestiges are still there. The importance of client competence -- at least in specifying mission or usage requirements--lingers on. But why would this be, if the economy were truly centrally planned rather than just centrally administered? Soviet compressor problems, furthermore, would not vanish even under an ideal incentive structure. There is no evidence that participants in the gas campaign lack motivation. Given the Kremlin's political perspective, emphasizing the importance of invulnerability to external pressure, there appears to have been overinvestment in foreign compressors, as the Soviets had not developed domestic capability to exceed 10 MW in a unit which proved necessary to prosecute the program in the face of a U.S. embargo. The lack of decision rules has permitted a client and supplier to collude in such a way as to force Gosplan to import extensively. An important adversary relation develops between the gas/oil sector and the government.

The petrochemical and chemical machinery sector is not a case of client incapability. In 1977, new capacity in Western Siberia, Udmont ASSR, Komi ASSR, Perm Oblast and the Georgian SSR caused overfulfillment of all extraction plans. [173] Reading industrial articles on chemical equipment, one gets the impression not of baffled consumers and rigid, dull, bureaucratic producers; but rather a picture of clever if lazy industrialists integrating themselves into a world market that, for the price of state capital or a few countertrade agreements, will solve their problems for them. This is markedly different from the overall Soviet pattern, criticized in a recent article on license purchasing.

- 103 -

In 1979 the Federal Republic bought \$1.3 billion of licenses, Japan bought \$1.2 billion, the U.S.A. bought \$700 million, and the Soviet Union bought only \$64 million. [174] If it were not for the premium the Soviets place (perhaps with good reason) on self-reliance, one could easily argue the Soviets pitifully underinvest in foreign technology. The chemical and petrochemical machinebuilders, on this view, would represent the wave of the future. Any American manager who has watched the explosion of marketing, acquisition and other service functions at the expense of production in the USA would find the trend familiar.

There are many intertwining strands in this brief review of the chemical and petrochemical machine sector that demand to be tied together. The relative lack of hostility between Minkhimneftemash and its clients does not rule out the adversary model hypothesized in this essay. Coordination in R&D would weaken the principle of divergent industrial interest groups, but we do not find this. The appearance of systematic resolution of research priority trade-offs would refute the principle that low-level Soviet industry, despite the presence of divergent interests, lacks standard arbitral or decision procedures to resolve conflicts. But again, we do not find any systematic translation of planning priorities into implementation trade-offs, especially in R&D. What we do find is an overburdened sector (both supplier and clients) which has evolved in the direction of a service sector. Thus Minkhimmeftemash strikes Hanson as a sort of general contractor providing auxiliary services to the client in support of foreign mainline technology. The evidence even points in the direction of interministerial complicity or advocacy to secure a stream of backup proven technology from abroad when technical problems threaten to

- 104 -

overwhelm. Industrial advocacy both of other ministries and of certain technologies (e.g., vacuum equipment) fits neatly into the general adversary framework. There remains a question about the sense in which the arrangements in this sector cause overinvestment or underinvestment in foreign technology. Were it not for the importance to the Soviets of self-reliance, we could forcefully argue that the Soviets underinvest generally in foreign technology. Accepting the weight of the value of self-reliance demonstrated in general Soviet trade practice, however, we can notice that chemical machinery seems to be out of line. Indeed, the potential effectiveness of an effective pipeline compressor embargo illustrates the Soviet chemical machinebuilding sector's unusual reliance on the West. We may at least characterize Soviet demand for foreign chemical technology as relatively inelastic. This sector has offered another variation on client characteristics. Soviet chemical and petrochemical industrialists, even if lazy, do not appear to be incompetent consumers of equipment. They tend to maintain foreign machinery comparatively well, and understand their options well enough to prefer it. The example of clever, technologically competent, and politically astute clients complements the computer sector's incompetence and agriculture's apathy.

V. CONCLUSION

The core of the essay is a decisionmaking model that attempts to explain the importance of client characteristics to industrial outcomes even in the absence of a price system or a market structure. The first principle of the model is that low-level decisionmaking in Soviet nondefense industry involves numerous conflicting interests, typically clients and suppliers who adopt adversary or advocacy roles. The second principle is that this system fails to provide routine arbitration or decision procedures to resolve industrial conflicts once it has encouraged the articulation of often incompatible interests. The effect of these two principles is the constant need for ad hoc industrial adjudication, much of which is probably supplied by Party officials at various levels who are frequently unversed in the technologies involved.

Adversary roles proliferate particularly in agricultural ' machinebuilding: we have seen conflicts between Mintraktor and Gosplan, Mintraktor and Minfin, Mintraktor and the Ministry of Trade, Mintraktor and other production ministries, and the Ministry of Procurement and the grain elevator contractors. The existence of this adversary system helps explain why Sel'khoztekhnika has not improved outcomes in the tractor sector despite the fact that the research hypotheses would lead us to expect an upturn with the institutionalization of a buyer advocate: Sel'khoztekhnika has merely multiplied the number of unadjudicated adversary relations in the sector. The apparent need for institutional advocates to prosecute technologies such as chemical fertilizer production (Sel'khozkhimiya) and vacuum equipment further corroborates the adversary model.

- 106 -

On the basis of the cases presented, we might expect a broad connection between the decision to import technology in the Soviet Union and the nature of the recipient ministry. Such a result would not be out of place in a market with profit-maximizing behavior. But on closer examination, there is an inconsistency with the market model. It is not client competence, but client utility, that affects economic decisionmaking in a market. It is the client's willingness to pay for computers and support services that affects IBM's activities, not the client's proficiency with the technology. The situation for Minpribor is reversed. Indeed, client incompetence seems to drive outcomes in the Soviet computer sector. Of course, other factors contribute to the dismal record of Soviet effort at computer technology diffusion, such as the pressure on an enterprise to remain independent of suppliers and clients, and the vulnerability of Soviet computer usage to misinformation from uncooperative comrades on the production line. The general theme, nevertheless, carries over into other Soviet sectors. Thus the irresponsibility of farm equipment buyers characterizes tractor acquisition to the extent that the sector seems insensitive to easily remediable failings in Soviet tractor life-cycles. And the clever maneuvering of chemical and petrochemical equipment buyers, together with their apparent close cooperation with Soviet domestic supply organizations, has created uncharacteristically high reliance on foreign goods. The examples of incompetent, irresponsible and risk-averse clients broaden the base of support for the research hypotheses. But it is principally the interaction between Minpribor and its clients that should incline us toward the present generalizations about the effect of clients on Soviet nondefense industrial decisionmaking.

- 107 -

The approach taken here toward assessing the impact of incentives on Soviet economic decisionmaking is not different from the approach of Joseph Berliner: incentives are crucial, but only in the context of the entire decision system. This implies that any emphasis on the isolated effect of incentive structure on industrial outcomes is likely to result in a biased analysis of low-level nondefense industrial decisionmaking in the Soviet Union. (Omission of a significant explanatory interaction term crossing the incentive structure and the decision system biases the estimated impact of incentive structure on economic outcomes, to make a metaphor of factor-response models.) Thus it is true that Soviet computer development is a casualty of an incentive system that rewards unthinking acquisition of equipment as opposed to its useful employment; but one must ask whose interests the incentive system serves, and what process instituted that system. It is plausible that Minpribor has bargained successfully for a set of rules that have the effect of encouraging computer diffusion to the benefit of the producer but not of the unready customer. The incentives in agriculture create apathy; but this apathy is further embedded in a decisionmaking system that requires institutional advocacy to accomplish economic objectives and in which the apathy first becomes vicious. Petrochemical and chemical equipment producers and buyers appear well motivated, but exploit the complexities of the adversary system to rely in some considerable part on foreign technology and to that extent transform their position from low-margin producers to high-margin contractors and providers of support services. Incentive reform in the Soviet Union will alter nothing if it does not overhaul the decisionmaking system as well.

Chemical-petrochemical machinebuilding is distinctive among Soviet machinery branches in the extent of its reliance on foreign imports. The American sanctions of 1981-82 put in relief the political riskiness of such a policy. Of course, in view of the qualitative inferiority relative to foreign counterparts of much Soviet machinery and the evidence of lengthy lead times for new equipment production capacity, it is reasonable to suppose that the USSR is generally underinvesting in foreign technolgy. Again, Sel'khoztekhnika overinvests in new equipment with respect to consequent economic benefit, as seen from the point of view of the Ministry of Finance (which foots the bill). And computer buyers overinvest when they store expensive equipment in the basement of a youth hostel next to the showers. One salient result of this essay is that the decisionmaking system that seems to underlie the case material has no predisposition against underinvestment or overinvestment, since it is insensitive to any practicable measure of usefulness of the technologies clients are trying to apply. Since it is possible any given Soviet sector is overinvesting in foreign technology, we cannot assume without further information that U.S. foreign trade sanctions will impose economic costs on the targeted Soviet ministries.

Assuming that we understand top-level Soviet economic policy, the price and cost structure of the industries in question, and an account of relevant hard currency countertrade practice, the considerations of the present essay would permit further refinement of predictions of Soviet economic decisionmaking that exploits information on the nature of the client ministry. These considerations should also have a direct application in the projection of Soviet demand for foreign technology in

- 109 -

nondefense sectors. That demand, once again, is partly the product of information arising from bilateral negotiations between various supplier and buyer organizations, and not just the result of the activities of a central planning agency like Gosplan or of a Central Committee Department. But the negotiations go on in an environment of uncertainty, lacking fixed arbitral procedures. The upshot is that feedback reaches Soviet suppliers by very strange channels. Feedback there is; but we must understand the structure of clients as well as suppliers to comprehend it and to exploit it in predicting Soviet economic behavior.

FOOTNOTES

Please note that CDSP means Current Digest of the Soviet Press; that Cybernetics and Agriculture refer to those series of JPRS' USSR Report; that Sots.Ind. means Sotsialisticheskaya Industriya; and that unattributed translations are the responsibility of the present writer, usually working off an original and a CIA Aegis machine translation.

- Alec Nove. Soviet Economic System. George Allen & Unwin Ltd., London, 1977. p. 160.
- 2. Joseph S. Berliner. Innovation Decision in Soviet Industry. MIT Press, Cambridge, Massachusetts, 1976. chrs 14 and 15.
- 3. *Ibid.* ch7.
- 4. Nove. pp. 261-62.
- 5. H. Gordon Skilling, Franklyn Griffiths, eds. Interest Groups in Soviet Politics. Princeton, 1971. Especially ch2.
- 6. Jerry F. Hough. Soviet Prefects: the Local Party Organs in Industrial Decisionmaking. Harvard, 1969.
- Nichal Lakatos. "On Some Problems of the Structure of Our Political System" in *Pravny obzor*, 1965, 1:26-36. Cited in Skilling and Griffiths, p. 16.
- 8. Nove. p. 109.
- 9. Berliner, p. 475.
- 10. David Granick. Soviet Introduction of New Technology: a Depiction of the Process. SRI Technical Note SSC-TN-2625-7, Jan 75. p. 104.
- 11. Berliner. chrs 8-11.
- 12. Eugene Zaleski, Helgard Wienert. Technology Transfer Between East and West. OECD, Paris, 1980. pp. 263-271.
- John H. Moore. "Agency Costs, Technological Change, and Soviet Central Planning" in *Journal of Law and Economics*, Oct. 81, XXIV:189-214.
- 14. Ibid. p. 192.
- 15. Ibid. p. 200.
- 16. *Ibid*. p. 211.
- 17. Kenneth Tasky. "Soviet Technology Gap and Dependence on the West: the Case of Computers" in Soviet Economy in a Time of Troubles. Joint Economic Committee, 1979. p. 510.
- 18. E. Yakubaytis (vice president of the Latvian Academy of Sciences). "Computing System" in Sovetskaya Latviya, 22 June 76. p. 2. Translated in JPRS 68066 Cybernetics, 14 Oct. 76. 24:1-5.
- Morris Bornstein, et al. Planning and Management of Industrial Research and Development in the U.S.S.R. Stanford Research Institute Technical Note SSC-TN-7557-7. Jun 80. pp. 38-46.

- 20. S. Tikhomirov. Pravda 6 Jun 78. p. 3. Translated in CDSP (Current Digest of the Soviet Press) 30:24:13.
- 21. Sovetskaya Belorussiya, 5 Sep 76. p. 3. Translated in JPRS 68295 Cybernetics, 1 Dec 76, 25:14.
- 22. V.B. Bezrukov and O.M. Yun'. Ekonomika i Matematicheskiye Metody, May-Jun 81, 17:3:429-30. Translated in JPRS 79294 Cybernetics, 26 Oct 81, 58:60.
- 23. Martin Cave. Computers and Economic Planning: the Soviet Experience. Cambridge University Press, 1980. pp. 6-7.
- 24. N. Zenchemko. *Planovoye Khozyaistvo*, Jun 81, 6:25:32. Translated in JPRS 79294 *Cybernetics*, 26 Oct 81, 58:33.
- 25. Ekonomicheskaya Gazeta, 1978, 23:13. Tr. in CDSP 30:25:6.
- 26. G. Kirikov (chief from Experimental Design office of "Automatics").
 "System Effectiveness" in Sotsialisticheskaya Industriya, 19 Jun 77.
 p. 2. Translated in JPRS 70518 Cybernetics, 23 Jan 78, 30:8-9.
- 27. V. Ovsepyan (from an Armenian NII). "ACS: Periods of Implementation" in Kommunist (Yerevan), 29 Apr 76. p. 2. Translated in JPRS 67770 Cybernetics, 17 Aug 76, 23:7-10.
- 28. Kirikov.
- 29. S. Sazonov (Central Statistical Administration). "To Improve the Use of Computers" in Ekonomicheskaya Gazeta, Jan 76, 3:1. Translated in JPRS 67589 Cybernetics, 13 Jul 76, 22:3-7.
- 30. N. Brins (maintenance worker in Central Statistical Administration). Sovetskaya Belorussiya, 6 Aug 76. p. 2. Translated in JPRS 68529 Cybernetics, 26 Jan 77, 26:2.
- 31. M. Rakovskiy. "Surprises of the Electronic Machines" in Pravda, 22 Mar 77. p. 2. Translated in JPRS 69074 Cybernetics, 10 May 77, 27:5; also in CDSP 29:9:8.
- 32. Ibid.
- 33. G. Kushnir (1st secretary, Frunzenskiy raykom at Kishinev). Sots. Ind., 1 Apr 81. p. 2. Translated in JPRS Cybernetics, 7 Jul 81, 56:8.
- 34. Ye. Ivanov and B. Shaydulov. Sots. Ind., 11 Jun 78. p. 2. Translated in JPRS 72020 Cybernetics, 11 Oct 78, 36:3.
- 35. A.G. Golub. Eko (Ekonomika Promyshlennovo Proizvodstva), Feb 79, 2:48-54. Translated in CDSP 31:24:10.

- 36. Rakovskiy.
- 37. I. Ruvinskiy (Gosstandart). "Personal and Group Computers" in Pravda, 19 Nov 75. p. 2. Translated in JPRS 67228 Cybernetics, 30 Apr 76, 21:1-6.
- 38. A. Nezabitovskiy (general director, Elektronmash, Kiev). Sots. Ind., 21 Aug 77. p. 2. Translated in JPRS 71274 Cybernetics, 9 Jun 78, 33:16-18.
- 39. K. Solntsev. Pravda, 6 Jul 77. p. 2. Translated CDSP 29:27:18.
- 40. Pravda, 20 Nov 77. p. 2. Translated CDSP 29:47:12.
- 41. Ekonomika i zhizn', Apr 81, 4:24. Translated JPRS 79294:80.
- 42. "Is ASUP Effective?" in *Promyshlennost' Belorussii*, Jun 78, 1:4. Translated in JPRS 71274 *Cybernetics*, 9 Jun 78, 33:19-20.
- 43. Moyiseyev. *Izvestiya*, 31 May 75. p. 5. Translated in JPRS 66652 *Cybernetics*, 23 Jan 76, 19:141.
- 44. Pravda, 13 Mar 78. p.2 Translated in CDSP 30:11:6.
- 45. I. Bobko. Sovetskaya Rossiya, 12 Jul 77. p. 2. Translated in JPRS 70614 Cybernetics, 9 Feb 78, 31:3.
- 46. A. Lysenko. *Rabochaya Gazeta*. Translation in JPRS 72463 *Cybernetics*, 18 Dec 78, 37:5-7.
- 47. Ye. Sabinin (RSFSR Supreme Soviet). "Payback from Computers," in Pravda, 9 Apr 76. p. 2. Translated in JPRS 67770 Cybernetics, 17 Aug 76, 23:3-7.
- 48. Ruvinskiy.
- 49. M. Skryabin (director of planning). Ekonomicheskaya Gazeta, Sep 77, 39:17. Translated in JPRS 70518 Cybernetics, 23 Jan 78, 30:10.
- 50. Ekonomicheskaya Gazeta, Jul 76, 31:16.
- 51. Ya. Strugach. *Izvestiya*, 14 Mar 78. p. 2. Translated in JPRS 71274 *Cybernetics*, 9 Jun 78, 33:23.
- 52. V.A. Bunkin (director of LIMTU) and L.M. Kaplan. Pribory i sistemy upravleniya, 1975, 6:59-60. Translated in JPRS 66652 Cybernetics, 23 Jan 76, 19:143.
- 53. M. Nakhapetov. *Pravda*, 13 Oct 78. p. 2. Translated in *CDSP* 30:41:15.

- 54. S. Sarukhanov. Ekonomicheskaya Gazeta, 1980, 28:17. Translated CDSP 32:37:16.
- 55. Eko, 1979, 2:33-48. Translated in CDSP, 31:24:9.
- 56. A. Dmitriev (Central Scientific Research and Planning Experimental Institute for Commercial Buildings and Structures). "The Computer and the Pea" in *Sots. Ind.*, 6 Aug 78. p. 2. Translated in JPRS 72463 *Cybernetics*, 18 Dec 78, 37:3-5.
- 57. M.P. Gal'perin et al. (Svetlana Association). Upravlyayushchiye sistemy i mashiny, 1976, 6:27-29. Translated in JPRS 70495 Cybernetics, 17 Jan 78, 29:6.
- 58. S. Goodman, "Soviet Computing and Technology Transfers: an OVerview" in World Polifics, Jul 79, XXXI:4, p. 565.
- 59. Ibid. p. 563.
- 60. Ibid. p. 567.
- 61. Earl M. Rubenkin. "The Soviet Tractor Industry: Progress and Problems" in Soviet Economy in a New Perspective, JEC, 14 Oct 76. p. 602.
- 62. Ibid. p. 606.
- 63. Ibid. p. 610.
- 64. Ibid. p. 612.
- 65. Nove. p. 132.
- 66. "CPSU Agrarian Policy and the Technical Reequipping of Agriculture" in Voprosy Ekonomiki, Jul 77, 7:3-14.
- 67. Tekhnika i Vooruzheniye, 1974, 2:2-3.
- 68. "Machine Building for Livestock Husbandry" in Ekonomicheskaya Gazeta, Oct 79, 43:12. Translated in JPRS 74861 Agriculture, 3 Jan 80, 1212:88-94.
- 69. L.A. Stoma and N.M. Morozov. "Development of Mechanization of Livestock Breeding in Sixty Years" in *Zhivotnovodstvo*, Oct 77, 10:38-46. Translated in JPRS *Agriculture*, 5 Dec 77, 1104:70.
- 70. Ibid. p. 76.
- 71. V. Rybakov (Gosplan). "Intensification of Production and Material-Intensiveness of Output" in Ekonomika Sel'skogo Khozyaystva, May 78, 5:61-68. Translated in JPRS 71471 Agriculture, 17 Jul 78, 1129:6-15.

- 72. Moscow I, 15 Mar 77. Transcribed in BBC Summary, Part I, USSR, 1977. No. W923, All.
- 73. Tekhnika v Sel'skom Khozyaystve, 1975, 3:59-61.
- 74. Yu. Kosov. "Mutual Irresponsibility" in Sots.Ind. 25 Feb 79. p. 1. Translated in JPRS 73902 Agriculture, 25 Jul 79, 1193:75-77.
- 75. K. Yefremov (Cheboksary City Committee, CPSU). *Ibid.* p. 2. Translated in JPRS 73902:77-78.
- 76. Izvestiya, 1972, 271:2.
- 77. "Problems in Development of New Technology" in *Izvestiya*, 1971, 270:3.
- 78. I.I. Trepenenkov (All-Union NII for Tractors). "Multi-Model Nature of Tractor Fleet and Measures for Combating It" in *Traktory i Sel'khozmashiny*, Dec 80, 12:2-4. Translated in JPRS 77505 *Agriculture*, 4 Mar 81, 1268:43-48.
- 79. G.M. Loza (VASKhNIL), I.V. Kurtsev. "Prospects for Scientific-Technical program in Agricultural Productions" in Vestnik Sel'skokhozyaystvennoy Nauki, Aug 78, 8:85-95. Translated in JPRS 71993 Agriculture, 5 Oct 78, 1144:38-52.
- "Ineffectiveness of Research" in Ekonomicheskaya Gazeta, 1972, 23:22.
- 81. Sots. Ind., 12 Feb 76, 35:2.
- 82. Sots. Ind., 1973, 230:2.
- 83. Zhivotnovodstvo, Jul 79, 7:44-45. Translated in JPRS 74249 Agriculture 1200:13-16.
- 84. S. Ye. Il'yuskanok, V.P. Mozhin, A.I. Panchenko. "Planned Development of the Agro-Industrial Complex" in Nauka (Novosibirsk, 1975).
- 85. Soviet Business and Trade, 1977, 5:23:3.
- 86. Z. Gerasimova. "On the Prices for Agricultural Equipment" in Ekonomika Sel'skogo Khozyaystva, Mar 81, 3:40-42. Translated in JPRS 78032 Agriculture, 8 May 81, 1278:54-58.
- 87. L.P. Matveyeva (Minfin). "Intensifying Control over Compensation for the Difference in Prices for Machines and Mineral Fertilizers" in *Finansy SSSR*, Dec 77, 12:57-61. Translated in JPRS 70562 *Agriculture*, 30 Jan 78, 1113:12.

- 88. P.V. Chernomord (RSFSR Minfin). "Increase Control over the Utilization an Safeguarding of Funds Allocated for Agricultural Development" in *Finansy SSSR*, Apr 78, 4:20-24. JPRS 71275 *Agriculture* 12 June 78, 1125:40-46.
- 89. A. Stolbov. "Prices for Agricultural Products and the Stimulation of Production" in *Planovoye Khozyaystvo*, Jun 80, 6:92-96. Translated in JPRS 76234 *Agriculture*, 14 Aug 80, 1248:23-31.
- 90. Ibid.
- 91. R. Kravchenko. "Management of Efficiency of Capital Investments" in Ekonomika Sel'skogo Khozyaystva, Feb 78, 2:52-63. Translated in JPRS 70996 Agriculture, 21 Apr 78, 1122:44-58.
- 92. "Why We Want to Leave" (letter to editor), *Trud*, 28 Jun 78. p. 2. Translated in JPRS 71517 *Agriculture*, 21 Jul 78, 1131:5.
- 93. I. Rayg. "Role of Private Plots in Estonian Agriculture" in Kommunist Estonii, Feb 82, 2:28-34. Translated JPRS 80781 Agriculture, 11 May 82, 1328:31.
- 94. Ibid. p. 32.
- 95. Ibid..
- 96. A. Malkov (Rospotrebsoyuz). "For the Private Fields" in Pravda, 27 May 78. p. 3. Translated in JPRS 71406 Agriculture, 6 Jul 78, 1128:24-27.
- 97. Yu. Lyubichev. "A Miniature Tractor is Born" in Sel'skaya Zhizn', 9 May 81. p. 2. Translated in JPRS 78517 Agriculture, 15 Jul 81, 1288:43.
- 98. "Mechanization for Private Plots" in *Trud*, 19 Nov 77. p. 2. Translated in JPRS 70460 *Agriculture*, 11 Jan 78, 1110:62.
- 99. V. Yefimenko. "A Spade for the Garden, Electric Pruning Shears for the Exhibition Hall" in Sovetskaya Torgovlya, 16 Jan 82. p. 2.
- 100.*Ibid*.
- 101.M. Goremykin (head of Roskhozpotrebsoyuz). "For Light Farming" in *Ekonomicheskaya Gazeta*, Mar 80, 13:17. Translated in JPRS 76225 *Agriculture*, 14 Aug 80, 1247:32-34.
- 102.Masherov. Sel'skaya Gazeta (Minsk), 18 Sep 77. pp. 1-4. Translated in JPRS 70118 Agriculture, 8 Nov 77, 1099:9.
- 103.V. Manyakin. "Under Conditions of Developed Socialism" in Ekonomika Sel'skogo Khozyaystva, Nov 77, 11:60-67. Translated in JPRS 70475 Agriculture, 13 Jan 78, 1111:10. (Translated under title "Expenses for Transporting Agr. Products".)

104.Tass, 14 Mar 75.

- 105. "Harvesting and Protecting the Crops without Losses" in Ekonomicheskaya Gazeta, Jul 76, 27:2. Translated in JPRS 70130 Agriculture, 9 Nov 77, 1100:29-31.
- 106."From Plan to Completed Project" in *Ekonomicheskaya Gazeta*, May 75, 20:19. JPRS *Agriculture*, 9 Nov 77, 1100:37.
- 107.I. Gavrilenko. "Grain Needs a Roof" in *Ekonomicheskaya Gazeta*, Oct 77, 41:18. Translated in JPRS *Agriculture*, 11 Nov 77, 1101:16.
- 108.G. Khaliletskiy. "What Disturbs the Builders" in Ekonomicheskaya Gazeta, Oct 77, 41:18. Translated in JPRS Agriculture, 11 Nov 77, 1101:17-18.
- 109.N. Gayevoy. "What Should Granaries be Like" in Stroitel'naya Gazeta, 7 Feb 79. p. 2. Translated in JPRS 72970 Agriculture, 12 Mar 79, 1168:44-46.
- 110.A. Maslov. "For the Storage of Grain" in Sel'skaya Zhizn', 30 May 78. p. 2. Translated in JPRS 71471 Agriculture, 17 Jul 78, 1129:80-83.
- 111. Ekonomicheskaya Gazeta, Mar 78, 12:18. Translated in JPRS 71275 Agriculture, 12 Jun 78, 1125:69.
- 112.H. Yarmolyuk (agrochemical service) and M. Babienko (Ukrainian Ministry of Agriculture). "Agrochemical Service and the Harvest" in *Sil'ski Visti*, 27 Aug 78. p. 2. Translated in JPRS 72404 *Agriculture*, 11 Dec 78, 1156:13-16.
- 113.V.P. Tolstousov (deputy chief of the Main Administration for the Use of Chemical Processes in Agriculture of the Ministry of Agriculture). "Chemistry for the Benefit of Farmers" in Tekhnika v Sel'skom Khozyaystve, Nov 77, 11:57-60. Translated in JPRS 70624 Agriculture, 10 Feb 78, 1114:78.
- 114.Rybakov.
- 115. "A Single Chemization Service" in Sel'skoye Khozyaystvo Belorussii, Nov 79, 11:2-3. Translated in JPRS 75220 Agriculture, 28 Feb 80, 1219:14-18.
- 116. "Machines for the Grain Growers" in Sovetskaya Rossiya, 16 Oct 77. p. 4. Translated in JPRS 70647 Agriculture, 16 Feb 78, 1115:38.
- 117.Yu. Grachev. "Rural Orders on the Agenda" in Sel'skaya Zhizn', 13 Dec 77, 13:2. Translated in JPRS Agriculture, 9 Jan 78, 1108:44-45.
- 118.V. Bykadorov, "New Equipment for the Fields: Remarks from the All-Union Conference of Tractor and Agricultural Machinebuilding

Designers and Engineers" in *Sel'skaya Zhizn'*, 4 Feb 81. p. 2. Translated in JPRS 77804 *Agriculture*, 10 Apr 81, 1272:47-48.

- 119. Moscow Domestic Service, 1 Jun 79, 1338 GNT.
- 120.Masherov.
- 121.V. Laurimaa. "Our Concerns are the Following" in Sovetskaya Estoniya, 25 Aug 78. p. 2. Translated in JPRS 72077 Agriculture, 19 Oct 78, 1147:7-10.
- 122.Resolution on Agriculture. Moscow Domestic Service, 27 Mar 65, 0600 GMT. Translated in FBIS/USSR/#59-65. p. CC24.
- 123. Ibid. p. CC26.
- 124. "Soviet Chemical Equipment Purchases from the West: Impact on Production and Foreign Trade." CIA NFAC, Oct 78. ER 78-10554. p. 3.
- 125. Ibid. p. ii.
- 126.Hanson. "Soviet Strategies..." p. 5.
- 127.Ibid. p. 3.
- 128.Ibid. p. 14.
- 129.Ibid. p. 42.
- 130.Ibid. p. 36.
- 131. Izvestiya, 1973. p. 3. (Reference incomplete.) Translated in CDSP 25:32:17-18.
- 132. "Minister of Refining on his Industry's Progress" in Soviet Business and Trade, 1975, 3:17:6.
- 133. "Interview with Minneftekhimprom Minister" on *Moscow Domestic* Service, 12 Dec 74.
- 134."Overburdened Ministry" in Soviet Business and Trade, 1976, 5:3:6.
- 135. "UOP Shows and Signed in Moscow" in Soviet Business and Trade, 1974, 3:14:1-2; "Gulf Oil Signs Agreement" in Soviet Business and Trade, 1975, 3:20:1; "Soviet French Gas and Petrol Agreements" in Sovetskaya Kirgiziya, 11 Dec 75, 288:3; "USSR Standard Oil Agreement" in Tass Vestnik Ekonomicheskoy i Kommecheskoy Informatsii, 9 Sep 75. p. 3; "Two US Oil Companies Sign Cooperation Accords" in Soviet Business and Trade, 1975, 4:9:1-2.
- 136. "Occidental Petroleum Signs Five Year Technological Cooperation Agreement" in Soviet Business and Economic Report, 7 Aug 72. pp. 2-3.

- 137.Paul Marer. "US-CMEA Industrial Cooperation in the Chemical Industry" in Saunders, C.T. (ed.), East-West Cooperation in Business: Inter-Firm Studies, (Springer Verlag, Vienna, 1977). p. 127. See also Appendix A.
- 138.Hanson. "Soviet Strategies..." p. 47.
- 139.*Ibid.* p. 26.
- 140.*Ibid*.
- 141.Ibid. p. 48.
- 142.Ibid. p. 49.
- 143. "Increase in the Efficiency of Production and Capital Investments" in Partiynaya Zhizn', 1975, 18:16-24.
- 144.Neftyanik, 1974, 7:1-2.
- 145.Ye. Borodin an L. Levitsky. "A Partner's Shoulder" in *Izvestiya*, 8 May 80. p. 2. Translated as "Tomsk Petrochemical Plant Hits Snag" in *CDSP* 32:19:10.
- 146.Sandia-Lab, 15 Sep 75. Report No. 750915.
- 147. "Improving R&D Management" in Sots.Ind., 16 Sep 76, 219:2.
- 148. "What Should be Considered New Technology" in Pravda, 14 Jan 73. p. 2 Translated in CDSP 25:2:11-12.
- 149. "Economic Relationships Between Science, Technology and Production" in Voprosy Ekonomiki, 1973, 11:87-96.
- 150. "Development of Scientific Research in the Higher School" in Nauchnyye Doklady Vysshey Shkoly, Ekonomicheskiye Nauki, 1975, 12:3-10.
- 151."Institute of Chemical Physics of the Academy of Sciences of the USSR" in Voprosy Izobretatel'stva, 1976, 9:46-51.
- 152."Research and Production Corporation of the Petrochemical Industry" in *Moskovskaya Pravda*, 1973, 203:2.
- 153.Sots. Ind., 1973, 219:2.
- 154."The Caspian to the Baltic" in *Soviet Business and Trade*, 1976, 5:8:4.
- 155."A Second Call for Improvements in Production of Vacuum Equipment" in Pravda, 20 Apr 77, 110:3.

- 156."In the Role of those Who are Catching Up" in Sots. Ind., 1973. p. 2.
- 157. "The Wholesale Trade of Petroleum Products, an Experiment in its Organization" in Ekonomika Promyshlennogo Proizvodstva (Eko), 1973, 4:69-74.
- 158. "Technical Progress in Chemical and Petroleum Machine Construction" in Sots. Ind., 17 Aug 75, 193:2.
- 159. "Complete Sets of Equipment for the Chemical Industry" in Sots. Ind., 10 Aug 76, 187:2.
- 160. "Chemicals and Petroleum Equipment" on *Moscow II*, 28 Mar 77. Translated in *BBC Summary Part I*, 1977 No. W924, A9.
- 161.Robert Campbell. Soviet Technology Imports: the Gas Pipeline Case. California Seminar, Feb 81, Discussion Paper No. 91.
- 162.Ibid. pp. 8-10.
- 163.*Ibid*. p. 10.
- 164.Ibid. p. 13.
- 165.*Ibid.* p. 16.
- 166.Ibid. p. 17.
- 167. Ibid. pp. 19-20.
- 168.*Ibid.* p. 21.
- 169.*Ibid.* p. 23.
- 170.Ibid. p. 24.
- 171.Ibid. p. 27.
- 172. Ibid. p. 30.
- 173. "Results and Tasks" in Neftyanoye Khozyaystvo, 1977, 3:3-8.
- 174.N. Smelyakov (deputy minister for Trade). "Demand also Depends on Supply" in Trud, 24 Jul 81. p. 2. Translated in JPRS 79572 USSR Report: Construction and Equipment, 2 Dec 81, 51:43.